
FACULTEIT WETENSCHAPPEN

EXPLORING THE LIMITS OF A HADRONIC
PICTURE OF NUCLEI THROUGH PION

AND NUCLEON REMOVAL REACTIONS

Wim Cosyn

Promotor: Prof. dr. JAN RYCKEBUSCH

Proefschrift ingediend tot het behalen van de academische graad van

Doctor in de Wetenschappen: Fysica

Universiteit Gent

Faculteit Wetenschappen

Vakgroep Subatomaire en Stralingsfysica

Academiejaar 2008-2009





Abstract

A relativistic and quantum mechanical framework to compute nuclear transparencies for
pion and nucleon production reactions is presented. Final state interactions for the ejected
pions and nucleons are implemented in a relativistic Glauber eikonal approach. The pro-
posed model can account for the color transparency (CT) phenomenon and short-range
correlations (SRC) in the nucleus. Results are presented for kinematics corresponding to
completed experiments for A(γ,π−p), A(e, e′π+) and A(γ, pp). The influence of CT and SRC
on the nuclear transparency is studied. Both the SRC and CT mechanisms increase the nu-
clear transparency. The two mechanisms can be clearly separated, though, as they exhibit
a completely different dependence on the hard-scale parameter. Recent A(e, eπ+) results
point towards the early onset of the CT phenomenon in pion production processes. The
similarities in the trends and magnitudes of the computed nuclear transparencies compared
to semi-classical models indicate that they are not subject to strong model dependencies. A
comparison made in the model between the density dependence of the A(e, e′p), A(p, 2p)
and A(γ, pp) reactions shows that the bulk of the (γ, pp) strength stems from the high den-
sity regions in the deep nuclear interior. Despite the strong attenuation, sizable densities
can be probed by (p, 2p) provided that the energy resolution allows one to pick nucleons
from s orbits. The effective mean densities that can be probed in high-energy (e, e′p) are of
the order of 30-50% of the nuclear saturation density.
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Chapter 1
Introduction

The building blocks of visible matter (ranging from cells to stars) consist of nuclei. Research

in nuclear physics and the technological advances spurred by its demands have made a

large impact on society. It has for example, resulted in the building of nuclear power

plants, which account for a significant share of the global electricity production. Nuclear

sources are also used to power ships and space vehicles. The development of the atomic

bomb and the threat of nuclear warfare made a large impact on international relations

in the second half of the 20th century. Radioactive isotopes are used in many medical

procedures and proton radiation therapy provides a more controllable alternative to more

standard therapies that involve photons or electrons. Accelerator mass spectrometry is used

in archaeology, environmental and biomedical research. The tools used in the ion doping

of integrated circuits or medical prosthetics are spin-offs from accelerator technology used

in nuclear physics.

The nucleus, however, still harbours a lot of uncharted territory. Since the experiments

of Rutherford [1], Chadwick’s discovery of the neutron [2] and the work of Yukawa [3], we

adopt the picture that a nucleus is made up of protons and neutrons held together by the

meson-mediated strong force. The development of Quantum Chromodynamics (QCD) and

the deep inelastic scattering experiments in the 1950s and 1960s provided evidence that

quarks and gluons are the fundamental degrees of freedom of the strong force. The use of

colorless nucleons and mesons as effective degrees of freedom in the nucleus, stems from

the inability to solve QCD in the confinement region and has proved highly efficient and

successful. The study of the crossover from hadronic to partonic degrees of freedom is an

active and exciting line of current research [4]. To map the transition region, one can look

for the onset of phenomena originating from QCD predictions as deviations from standard

nuclear-physics predictions. In this work we adopt the view that QCD phenomena can

be clearly identified when there are deviations between measurements and sophisticated
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calculations that adopt hadronic degrees of freedom.

Color Transparency

One of the QCD predictions is the color transparency (CT) effect. For recent overviews of

the phenomenon, we point the reader to [5, 6]. Color transparency was first described by

Mueller and Brodsky [7, 8] and deals with the expansion of a small-sized configuration of

quarks into a regular hadron state. To the nuclear medium, this small-sized configuration

(also called Point Like Configuration or PLC) seems a colorless object and the interactions

with the nuclear medium lose in importance: the normally strong interacting hadron can

propagate without final-state interactions (FSI). This can be compared to several similar

effects in QED. An electron-positron pair experiences a reduced energy loss in the vicinity

of their creation point due to internal screening of their charges. This is called the King-

Perkins-Chudakov effect [9], and has been observed in cosmic ray tracks [10, 11] and a gold

target [12]. A similar reduction of interactions can be observed in vacuum-assisted photo-

ionization [13]. The created electron-positron pair that mediates the ionization is subject

to charge screening, lowering the ionization cross section. Cerenkov radiation is also found

to be reduced for radiation from a electron-positron pair when the pair separation is smaller

than the wavelength of the emitted light [14], and relativistic positronium beams become

“super-penetrating” for solid targets [15–18].

In order to observe true color transparency, three conditions must be satisfied [19–22]:

1. Reactions with a high momentum transfer squared. This is related to the uncer-

tainty principle: an impinging particle with high momentum and correspondingly

small de Broglie wavelength, will probe small distance scales. When hitting a con-

fined colored quark, it can only interact with quarks in a small region within the

range associated with the wavelength of the probe before hadronization occurs. This

production of an object with small size was originally derived as a consequence of

perturbative QCD at very high Q2 [23, 24]. Studies within hadronic models, how-

ever, have shown that a PLC could be produced at momentum transfers squared as

low as 1− 2 (GeV/c)2 [25, 26].

2. The PLC experiences reduced interactions (color screening). The diagram of low-

est order describing the interaction between a color singlet and the medium involves

the exchange of two gluons. One of the possible diagrams is depicted in Fig. 1.1.

Perturbative QCD dictates that the cross section of the singlet-medium reaction is

proportional to b2, with b the transverse distance between the constituents of the

singlet. For a PLC, the interactions with the medium will hence vanish. One can com-
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Figure 1.1 One of the possible lowest-order diagrams for the interaction of a color singlet of two
constituents with transverse size b, with a medium containing constituents grouped in colorless
objects. The thick incoming and outgoing lines stand for colorless objects. The two gluons can
originate and end on any of the constituents, and cross diagrams are also possible.

pare this behaviour to the reduced interaction experienced by an object with a small

dipole moment in QED.

3. Ejected particles with a high momentum. As the PLC is not an eigenstate of the

QCD Hamiltonian, it will evolve to the normal hadron state along a certain forma-

tion length l f . As the lifetime of the PLC is dilated in the rest frame of the nucleus,

higher PLC momenta imply a larger l f . In order to maximize the color-transparency

phenomenon, the condition l f � RA (with RA the radius of the nucleus) should be

met. Under current experimental conditions, this condition is as yet not fulfilled and

the PLC expands in the nucleus and is subject to FSI while traversing the nucleus

(l f ≈ RA).

The observable measured in experiments in search for CT is the nuclear transparency,

defined as the ratio of the cross section per target nucleon for a process on a nucleus to the

cross section of the process on a free nucleon

T =
σnucleus

Aσfree nucleon
. (1.1)

Accordingly, the nuclear transparency provides a measure of the attenuation effects of the

nuclear medium on the hadrons produced in some reaction. One can study the hard-scale

dependence of the transparency for a certain target nucleus A, or the A dependence at a

fixed value of the hard-scale parameter. If CT effects were to appear at a certain energy,

the nuclear transparency would be observed to overshoot the predictions from traditional

nuclear physics expectations. The measurement of the onset and magnitude of the CT effect

allows to constrain models describing the evolution of a PLC into a hadron. The CT effect

also plays a role in the access to generalized parton distributions (GPDs) in deeply virtual

Compton scattering (DVCS) and meson production (DVMP) processes [27, 28], as it is a
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necessary condition for factorization to occur. The factorization is related to the assumption

that from a certain virtuality the soft and hard physics can be separated.
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Figure 1.2 The transparency T versus beam momentum for the 12C(p, 2p) reaction. Data are from
Refs. [29–31]. The shaded band represents a Glauber calculation from Ref. [32] and the solid curve
a parametrization from Ref. [33]. Figure taken from Ref. [31].

Since the late 1980s several experiments looking for signs of color transparency have

been performed for a variety of reactions. So far, there is no conclusive evidence for the CT

effect. The 12C(p, 2p) reaction was studied at Brookhaven National Laboratory (BNL) [29–

31]. As shown in Fig. 1.2, the transparency for the 12C(p, 2p) reaction first shows a rise as a

function of incoming beam momentum, but drops again for momenta larger than 9 GeV/c.

This behavior is not in line with traditional nuclear physics calculations. However, it is

currently not considered a clean sign of CT, but also attributed to nuclear filtering [33, 34]

or the threshold for charm resonance production [35]. Several experiments [36–41] have

measured the transparency using the A(e, e′p) reaction up to Q2 = 8.1 (GeV/c)2 for targets

including deuterium, carbon, iron and gold. No sign of CT was observed up to the largest

energies.

As a meson has two constituent quarks, one could expect that signatures of CT occur

at lower energies compared to a baryon. Indeed, it seems easier to produce a PLC with

two constituents. Measurements of the transparency for the production of ρ0 mesons at

Fermilab [42] showed a positive slope in the Q2 dependence of α in the parametrization T =

Aα−1, indicating CT effects. However, this slope has since been associated with variations

in the initial state interactions associated with the fluctuation of the virtual photon into
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a qq̄-pair [43]. More recent measurements at DESY by the HERMES collaboration [44]

for ρ0 production from a 1H and 14N target at Q2 = 0.9− 3 (GeV/c)2 show a rise in the

nuclear transparency. Another experiment at JLab measuring incoherent ρ0 production

is completed and under analysis [45]. The measurement of the cross section of diffractive

dissociation of 500 GeV/c pions into dijets at Fermilab [46] yielded the clearest signal of CT

so far. The cross section was parametrized as σ = σ0Aα, with σ0 a constant independent of

A. The fitting value of α≈ 1.55 deviates from the nominal value of 2/3 and is in agreement

with calculations assuming 100% color transparency. The value of Q2 in this experiment

was estimated at Q2 ¦ 10 (GeV/c)2. As such, the Fermilab results do not give a precise

value for the hard scale where CT effects start appearing, but only places an upper limit on

it.

During the last couple of years, three specific experiments to measure transparencies

have been conducted at the 6 GeV electron accelerator in Jefferson Lab. Two had a pion,

and the third two protons in the final state. The nuclear transparency for the pion photo-

production process A(γ,π−p)A−1 in 4He [47] and for double proton knockout A(γ, pp)A−2

in 3He and 12C [48, 49] have been measured in Hall A. In Hall C, data was taken for the

pion electroproduction process A(e, e′π+) in 4He, 27Al, 63Cu and 197Au [50].

Short-Range Correlations

In a many-body system, correlations between the constituents of the system are induced by

the interparticle forces. For a system with a one-body density ρ(~r), the two-body density

ρ(~r1,~r2) can be expressed as the conditional probability of finding a particle at ~r1 if there

is one present at ~r2:

ρ(~r1,~r2) = ρ(~r1)ρ(~r2)g(|~r1−~r2|) , (1.2)

with g(r) the correlation function. In the absence of correlations, g(r)≡ 1 and all particles

move independently of each other. For an atomic 4He liquid, the correlation function was

measured with neutron [51] and X-ray [52] scattering and is shown in Fig. 1.3. The corre-

lations are a consequence of the hard repulsive core of the interatomic potential v(r) that

is also shown in Fig. 1.3. The hard core reflects itself in g(r) becoming zero for small in-

terparticle separations. For larger distances, g(r) rises, and then oscillates before reaching

the asymptotic value of 1. These correlations increase the high-momentum components in

the momentum distribution of the atoms in the liquid.

Since its conception in the 1950s, the nuclear shell model has provided us with an

efficient approach to the nuclear many-body problem. In the nuclear shell model, the

nucleons are fermions that move independently in a mean field that accounts for a great
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Figure 1.3 Interatomic potential v(r) and correlation function g(r) for an atomic 4He liquid. σ is a
measure for the diameter of 4He. Figure taken from [53].

fraction of the interactions with the other nucleons. In the nuclear shell model, the A-

nucleon wave functions are Slater determinants with single-nucleon wave functions that are

eigenfunctions of the single-particle Hamiltonion. The latter contains a kinetic energy term

and a mean-field potential. As the Pauli principle prevents two nucleons from occupying

the same single-particle state, quantum levels are filled up to the Fermi-level for the ground

state of the nucleus.

Since the nucleons move in a mean-field potential, no explicit correlations between two

nucleons are present in the nuclear shell model wave functions. The realistic nucleon-

nucleon interaction consists of an attractive long distance part and a strong repulsive part

for separations shorter than 0.8 fm, all depending on the spins and isospins of the two

nucleons. The nuclear mean-field potential does not fully account for all aspects of the

nucleon-nucleon interaction. In particular, the repulsive hard core and tensor part give

rise to short-range correlations (SRC) that go beyond the typical mean-field approach. As

two nucleons get close together, the strong repulsion induces pairs with a high relative

momentum. As the nucleus is a closely packed system, those correlations make significant

contributions to the total wave function. The SRC cause high-density fluctuations in the

nucleus. Although debated, some think this might allow us to access cold dense matter

like one would encounter in neutron stars [54]. They enhance the high-momentum part

of the shell model wave function [55] and deplete (populate) levels below (above) the

Fermi-sea. As the SRC play at a small distance scale, their effect should be relatively A in-
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dependent. This is confirmed by the scaling of high momentum components in the nuclear

wave functions of light and complex nuclei to those of the deuteron wave function [56].

The long-range correlations (LRC) associated with pion exchange induce modifications to

shell model properties and give rise to highly collective modes, like giant resonances, in

nuclei.
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Figure 1.4 Weighted inclusive electron scattering cross sections ratios for 4He (upper panel), 12C
(middle panel) and 56Fe (lower panel), to the 3He one as a function of Bjorken x . The horizontal
dashed lines indicate the NN and 3N scaling regions. Figure taken from Ref. [57].

One- and two-nucleon knockout reactions have the potential to probe SRC. In inclusive

A(e, e′) measurements performed at Hall B in JLab, scaling was observed in the ratio of the

cross section of the different nuclei to the 3He one for Bjorken x values of 1.5 < x < 2 and

2.25 < x [57, 60] (see Fig. 1.4). The observed scaling suggests that the electrons probe

high-momentum bound nucleons originating from two-nucleon (first plateau) and three-

nucleon (second plateau) SRC. Moreover, the similar shape of the scaling for all measured

nuclei implies that the properties of these SRC do not depend on the residual nucleus.

A(e, e′p) experiments showed the spectroscopic strength of valence protons was only 55

to 75 % of the value predicted by shell model calculations, and around 10 % for shells

just above the Fermi sea [61]. Calculations showed both SRC and LRC contribute to these
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Figure 1.5 Scatter plot of the projection pup
f of the initial proton momentum on an axis opposite

to the momentum of the detected neutron versus the neutron momentum pn in the 12C(p, ppn)
reaction. Data are labelled according to the initial beam momentum. Data labelled 98 (94) are from
Refs. [58] ([59]). The vertical dashed line at 0.22 GeV/c corresponds to kF , the Fermi momentum
for 12C. Figure taken from Ref. [58]

values [62]. Measurements with missing momentum above 300 MeV/c and missing energy

larger than 50 MeV also yielded strengths larger up to an order of a magnitude than shell-

model predictions [63]. The results (Fig. 1.5) of the 12C(p, ppn) experiment carried out at

BNL by the EVA collaboration [58], show that the neutron in the final state is accompanied

by a proton in a random direction for neutron momenta below the Fermi surface (∼ 220

MeV). For neutron momenta exceeding the Fermi surface on the other hand, all the protons

were emitted with a projection ≥ 0. This translates to proton-neutron angles larger than

90 degrees. These directional correlations again form a clear signature of the dominance

of SRC for high momentum nucleons. For the 3He(e, e′pp)n reaction with the momentum

of all the nucleons in the final state larger than 250 MeV/c, the CLAS collaboration also

measured that a large share of the spectator nucleon pairs are correlated pairs [64]. A

recent 12C(e, e′pN) experiment at Hall A in Jefferson Lab provided indications that about

20% of the nucleons in carbon form correlated pairs [65, 66]. Of those about 90 % is of

the proton-neutron type, as shown in Fig. 1.6.
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Figure 1.6 Relative abundance of pp- and np-pairs for the 12C(e,e’pN) [66] and 12C(p,2pn) reaction
[58]. Figure taken from Ref. [67].

Outline

In this thesis, we present a model that can be used to describe pion and double nucleon

removal reactions. It enables us to calculate transparencies and compare them with the

data from the above-mentioned recent experiments. Three essential ingredients will draw

our attention:

• The hard process of the beam interacting with a constituent of the nucleus and pro-

ducing the ejected particles in the final state.

• The structure of the target and residual nucleus.

• The propagation of the ejected particles through the nuclear medium and their FSI

with the residual nucleons.

We assume that the incoming beam interacts with one of the bound nucleons, which

is known as the impulse approximation (IA). Two different approaches are used to model

the hard process. For the pion removal reactions, we factorize the amplitude into a part

containing the pion production process and a part containing the FSI. This yields an expres-

sion for the cross section for a nuclear target that can be related to their counterparts for

a free nucleon target. For the description of the two-nucleon knockout process, we employ

an unfactorized amplitude by including an explicit form for the interaction of the photon
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with a bound nucleon, and by relating the hard nucleon-nucleon scattering amplitude to a

parametrization for the free-space amplitude obtained from the SAID database [68].

In our work, the wave functions of the target and residual nucleus are obtained in an

independent particle model (IPM). The single-particle wave functions in the A-body Slater

determinants are solutions of a one-body Dirac equation with a spherically symmetric Dirac

potential. We use relativistic bound-state single particle wave functions calculated in the

Hartree approximation of the σ−ω model [69–71].

The experiments considered in this work have kinematics with outgoing particle mo-

menta of a few GeV/c. In this range, the eikonal approximation (EA) can be employed

to describe the FSI. The EA was first used in optics. When light has a wavelength that is

smaller than the reflecting and refracting objects that it finds on its way, one-dimensional

rays suffice to describe the physics of the process. Similarly, in quantum mechanics the EA

can be used for the small-angle scattering of high energy particles in a potential V . For a

non-relativistic incoming particle with energy E = (ħhk)2

2m
, the condition on the wavelength in

optics translate to V/E � 1 and 1
V/E
� ka� 1

(V/E)2
, with a the scattering length of the po-

tential [72]. A relativistic formulation of the eikonal approximation has been developed for

ejected nucleons and applied to A(e, e′p) [73, 74] and A(p, 2p) [75, 76] reactions. In this

work, we extend this model, based on multiple-scattering Glauber theory, to accommodate

outgoing pions. This provides us with a framework that can be applied to a broad spectrum

of reactions with hadronic or leptonic probes and outgoing nucleons and/or pions.

The outline of this work is as follows.

• Chapter 2 describes the theoretical framework that has been developed to model the

pion and two-nucleon knockout reactions. First, a factorized expression for the elec-

tromagnetically induced A(γ, Nπ) cross section is derived. In a next step, this is ex-

tended to the pion electroproduction reaction A(e, e′Nπ). For the A(γ, NN) reaction,

we consider two competing reaction mechanisms and describe both in an unfactor-

ized manner. First, we assume that the two-nucleon knockout can be the result of the

breakup of a correlated nucleon-nucleon pair. Thereby, the photon interacts with one

nucleon in the pair and both are ejected. A competing mechanism is hard rescattering

(HRM) whereby the ejectile induces a hard nucleon-nucleon interaction that makes

two nucleons to reach the detectors.

In Section 2.2 we deal with the implementation of the FSI. We introduce a relativis-

tic multiple-scattering Glauber approximation (RMSGA) to treat the FSI of nucle-

ons and pions with intermediate to high momentum. Special attention is paid to a
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parametrization of the πN scattering parameters which are required in Glauber cal-

culations. For nucleons with low momentum we cover an alternative implementation

of the FSI by means of optical potentials in an eikonal approach.

Sections 2.3 and 2.4 explain how the CT and SRC effects are implemented in our

model. Color transparency is included through the quantum diffusion model and

correlations through a well chosen correlation function that modifies the one-body

density. In our procedure, the proper normalization of the wave functions is guaran-

teed.

• Chapter 3 deals with the results of the numerical calculations done with our model.

We start with a detailed study of the FSI factor, wherein all effects of the FSI are

contained. Next, we show the results of the transparency calculations for the different

reactions. We study the influence of the CT and SRC effects on these results and try

to distinguish between the two. In order to value the robustness of the results of

our model, we compare them with predictions from alternative approaches. In the

final section, we investigate the density dependence of several reactions. We study the

influence of the FSI on the effectively probed density and compare reactions involving

one
�

(e, e′p)
�

, two
�

(γ, pp)
�

, and three
�

(p, 2p)
�

nucleons.

• Finally, our conclusions are stated in Chapter 4. Appendix A gives an overview of the

adopted notations. The bound-state wave functions used in the model to describe

the target and residual nucleus are covered in Appendix B. Appendix C treats the

scattering of a relativistic spinless particle in a potential. The transformations for the

representations used for the hard nucleon-nucleon rescattering matrix element are

outlined in Appendix D. Eventually, Appendix E lists the parametrization used for the

free pion electroproduction cross section.
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Chapter 2
Formalism

2.1 Kinematics and Observables

In this section, the formalism for the description of two types of reactions covered in this

thesis is outlined. We adopt the conventions ħh = c = 1. In subsec. 2.1.1, the fac-

torized form of the differential cross section for pion photoproduction from a nucleus is

derived. It is shown that, even when excluding final state interactions, the factorization

is not exact and can only be achieved after neglecting the negative energy contributions.

In subsec. 2.1.2, the factorization scheme is extended to pion electroproduction reactions.

Subsec. 2.1.3 introduces the two competing reaction mechanisms for A(γ, NN): knockout

of a correlated nucleon pair and hard rescattering.

2.1.1 Pion Photoproduction: The A(γ, Nπ) Cross Section

We use the following notations for the four-momenta in the laboratory frame: qµ(q,~q) for

the photon, PµA (EA,~pA = ~0) for the target nucleus, PµA−1(EA−1,~pA−1) for the residual nucleus,

PµN (EN ,~pN) and Pµπ (Eπ,~pπ) for the ejected nucleon and pion. The missing momentum ~pm is

defined as ~pm ≡ −~pA−1 = ~pN + ~pπ − ~q and the outgoing nucleon has spin ms. The fivefold

differential cross section in the laboratory frame reads [77]

d5σ

dEπdΩπdΩN
=

MA−1mN pπpN

4(2π)5qEA
f −1
rec

∑

f i

�

�

�M (γ,Nπ)
f i

�

�

�

2
, (2.1)

where MA, MA−1 and mN denote the rest mass of the target nucleus, the residual nucleus

and the nucleon, respectively.
∑

f i involves an averaging over the photon polarizations and

a summation over the spins of the final particles. The recoil factor frec is given by

frec =
EA−1

EA

�

�

�

�

�

1+
EN

EA−1

�

1+
(~pπ−~q) · ~pN

p2
N

�

�

�

�

�

�

, (2.2)
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andM (γ,Nπ)
f i denotes the invariant matrix element:

M (γ,Nπ)
f i = 〈Pµπ , PµN ms, PµA−1JRMR|Ô |qµ, PµA 0+〉 , (2.3)

where JRMR are the quantum numbers of the residual nucleus. We restrict ourselves to

processes with an even-even target nucleus A.

The ground-state wave function of the target nucleus |PµA 0+〉 ≡ Ψg.s.
A (~r1, . . . ,~rA) is ob-

tained by fully antisymmetrizing the product of the individual nucleon wave functions φα.

We model the pion photoproduction process by means of a contact interaction: the initial

nucleon, impinging photon, and the ejected pion and nucleon join in a single space-time

vertex. As the process can take place on any of the nucleons in the target nucleus, we get

the following expression for the corresponding photoproduction operator:

Ô =
A
∑

i=1

Oµ(~ri) . (2.4)

We assume that Ô is exempted from medium effects. This is a common assumption in

nuclear and hadronic physics and is usually referred to as the impulse or quasi-free approx-

imation (IA). In the context of A(e, e′p) reaction, for example, the impulse approximation

provides a fair description of the data [73]. It is also applied in the experimental analysis

of Ref. [50] and the model of Ref. [78]. The impinging photon with polarization λ is

represented by

Aµ(λ,~ri) = ε
µ(λ)ei~q·~ri . (2.5)

Here, εµ(λ) is the polarization four-vector of the photon. The wave function of the ejected

nucleon is written as

|PµN ms〉 ≡Ψ
(+)
~pN ,ms
(~ri) = Ŝ

†
N ′N(~ri;~r1, . . . ,~r j 6=i, . . . ,~rA)u(~pN , ms)e

i~pN ·~ri , (2.6)

which is the product of a positive-energy Dirac plane wave φ~pN
(~ri) = u(~pN , ms)ei~pN ·~ri and

an operator Ŝ †
N ′N . This operator describes the attenuation of the ejected nucleon through

soft final-state interactions with the other nucleons. The wave function for the ejected pion

adopts a similar form as the nucleon one, i.e. a plane wave convoluted with a FSI factor

Ŝ †
πN :

|Pµπ 〉 ≡ Φ
(+)
~pπ
(~ri) = Ŝ

†
πN(~ri;~r1, . . . ,~r j 6=i, . . . ,~rA)e

i~pπ·~ri . (2.7)

The final A-nucleon wave function is constructed by antisymmetrizing Ψ(+)~pN ,ms
with the wave

function for the residual nucleus ΨJR,mR
A−1 :

|PµN ms, PµA−1JRMR〉 ≡Ψ
~pN ,ms
A (~r1, . . . ,~rA) =

Â
�

Ŝ †
N ′N(~r1;~r2, . . . ,~rA)u(~pN , ms)e

i~pN ·~r1ΨJR,mR
A−1 (~r2, . . . ,~rA)

�

. (2.8)
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As Ψg.s.
A and Ψ~pN ,ms

A are fully antisymmetric, each term of the operator (2.4) will yield

the same contribution to the matrix element (2.3) and we can restrict ourselves to the term

with coordinate ~r1 and multiply it with A. With the above expressions for the operator and

the wave functions of the hadrons involved in the reaction, we can write for the matrix

element of Eq. (2.3) in coordinate space:

M (γ,Nπ)
f i = A

∫

d~r1

∫

d~r2 . . .

∫

d~rA

�

Ψ~pN ,ms
A

�

~r1,~r2, . . . ,~rA
�

�†

× e−i~pπ·~r1ŜπN(~r1;~r2, . . . ,~rA)Oµ(~r1)ε
µ(λ)ei~q·~r1Ψg.s.

A

�

~r1,~r2, . . . ,~rA
�

. (2.9)

Figure 2.1 Target dependence of the polarization data for p− p scattering and (p, 2p) reactions. P1
(P2) denotes the polarization of the fast forward (slow backward) nucleon. The solid (dashed) curve
represents a DWIA (PWIA) calculation [79, 80]. The PWIA result is extended to free proton-proton
scattering, where the value was obtained from a p − p scattering phase- shift analysis [81]. The
dotted line is the DWIA result, in which the relativistic effect is taken into account in a Schrödinger
equivalent form. Figure taken from Ref. [82].

We assume that ŜN ′N and ŜπN are spin independent and only retain the central part

of the FSI. This is a commonly used approximation in calculations for A(e, e′p), A(p, 2p)

and proton-nucleus reactions, based on the rapid decrease of the contribution from the

spin-dependent terms in the intermediate energy range. A recent experiment measured

the polarization for the fast forward and slow backward outgoing proton in the A(p, 2p)

reaction for several nuclei (6Li, 12C and 40Ca) [82]. As is shown in Fig. 2.1, a decrease

of the polarization with raising density was observed, but the effect for the fast proton
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(pN ≈ 800 MeV), was a lot smaller than for the slow proton (pN ≈ 180 MeV). We also

assume that only elastic and mildly inelastic collisions with the spectator nucleons occur.

The actual nuclear transparency measurements select events whereby the undetected final

state with (A− 1) nucleons
�

�PµA−1JRMR

¶

is left with an excitation energy of the order of

100 MeV or less, which makes these assumptions very plausible. In computing the matrix

element of Eq. (2.9) we consider processes of the type displayed in Fig. 2.2. The following

spectator approximation is assumed to be valid for a struck nucleon with quantum numbers

α1 :
∫

d~r1 . . .

∫

d~rA

�

φ~pN
(Pn(~r1))Ŝ

†
N ′N(Pn(~r1); Pn(~r2), . . . , Pn(~rA))

×φα2
(Pn(~r2)) . . .φαA

(Pn(~rA))
�†

e−i~pπ·~r1ŜπN(~r1;~r2, . . . ,~rA)

×Oµ(~r1)e
i~q·~r1φα1

(Pm(~r1))φα2
(Pm(~r2)) . . .φαA

(Pm(~rA))

≈ δPn(~r2)Pm(~r2) . . .δPn(~rA)Pm(~rA)

∫

d~r1 . . .

∫

d~rA

×φ†
~pN
(~r1)ŜN ′N

�

~r1; Pn(~r2), . . . , Pn(~rA)
�

e−i~pπ·~r1ŜπN(~r1;~r2, . . . ,~rA)

×Oµ(~r1)e
i~q·~r1φα1

(Pm(~r1))|φα2
(Pm(~r2))|2 . . . |φαA

(Pm(~rA))|2 , (2.10)

with Pm and Pn permutations of the set {~r1, . . . ,~rA} occurring in the antisymmetrization of

the nucleon wave functions. Due to the presence of the δ-functions, the right-hand side of

Eq. (2.10) is non-vanishing under the condition that Pm(~r1) = ~r1 and Pm(~ri) = Pn(~ri) for

i = 2, .., A. This means that both the bound wave function α1 and the ejected nucleon have

the same spatial coordinate as the operator, ~r1. Moreover, all (A− 1)! permutations of the

subset {~r2, . . . ,~rA} yield an identical right-hand side.

Thus, after expanding the wave functions in Eq. (2.9) and employing Eq. (2.10), we

arrive at

M (γ,Nπ)
f i ≈

A(A− 1)!
A!

∫

d~r1

∫

d~r2 . . .

∫

d~rA

�

|φα2
(~r2)|2 . . . |φαA

(~rA)|2u†(~pN , ms)

×ŜπN(~r1;~r2, . . . ,~rA)ŜN ′N(~r1;~r2, . . . ,~rA)ε
µ(λ)Oµ(~r1)e

−i~pm·~r1φα1
(~r1)

�

. (2.11)

We now define the FSI factor FFSI(~r):

FFSI(~r) =

∫

d~r2 . . .

∫

d~rA|φα2
(~r2)|2 . . . |φαA

(~rA)|2ŜπN(~r;~r2, . . . ,~rA)ŜN ′N(~r;~r2, . . . ,~rA) , (2.12)

and write

M (γ,Nπ)
f i ≈

∫

d~r1FFSI(~r1)u
†(~pN , ms)ε

µ(λ)Oµ(~r1)e
−i~pm·~r1φα1

(~r1) . (2.13)
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Figure 2.2 Diagram included in computing the matrix element of Eq. (2.9). The dotted lines denote
the FSI of the ejected pion (red) and nucleon (blue) with the spectator residual nucleons. The
diagram shown here is representative for the spectator approximation: one active nucleon N and
π are subject to soft collisions with frozen spectator nucleons that occupy the single-particle levels
α2,α3, . . . ,αA and are not subject to changes in their quantum numbers.

In what follows, we assume that the pion production operator acts on a bound-state wave

function as a scalar (factorization assumption): Oµ(~r)φα1
(~r)≡Cµφα1

(~r). With

φD
α1
(~p) =

∫

d~re−i~p·~rφα1
(~r)F FSI(~r) , (2.14)

we can write

M (γ,Nπ)
f i ≈ u†(~pN , ms)ε

µ(λ)CµφD
α1
(~pm) . (2.15)

When studying nuclear transparencies, it is convenient to factorize the invariant matrix el-

ement in such a manner that it becomes a convolution of a factor describing the elementary

pion photoproduction process and a factor modeling the combined effect of all FSI mech-

anisms of the outgoing hadrons. In order to arrive at such a factorized form for the cross

section, we relate the γ+ A→ (A− 1) + N +π matrix element in Eq. (2.15) to the one for

free nucleons γ+ Ni → N +π
�

M (γ,Nπ)
f i free

�

ms ,m′s
= u†(~pN , ms)ε

µ(λ)Cµu(~pm, ms′) , (2.16)

with ms′ the spin of the initial nucleon. First, we consider the situation with vanishing

FSI, second the more realistic case with inclusion of a FSI phase operator. When ignoring

FSI, the wave functions for the ejected hadrons reduce to plane waves and FFSI(~r) ≡ 1,
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φD
α1
(~pm) ≡ φα1

(~pm). After substituting in Eq. (2.15) the completeness relation for Dirac

spinors:

∑

m′s

�

u(~pm, m′s)ū(~pm, m′s)− v(~pm, m′s)v̄(~pm, m′s)
�

= 1I4×4 , (2.17)

one obtains

�

M (γ,Nπ)
f i

�

RPWIA
=
∑

m′s

�

M (γ,Nπ)
f i free

�

ms ,m′s
ū(~pm, m′s)φα1

(~pm)

− negative energy terms , (2.18)

where RPWIA stands for the relativistic plane-wave impulse approximation. From this last

expression it is clear that even with vanishing FSI the presence of negative-energy compo-

nents makes factorization impossible. The contraction of the Dirac spinors ū and v̄ with the

bound nucleon wave function φα1
is given by

ū(~pm, m′s)φα1
(~pm) = (2π)

3/2(−i)l
È

ENi
(pm) +mNi

2mNi

αnκ(pm)χ
†
1
2

,m′s
Yκm(Ωp, ~σ) , (2.19)

v̄(~pm, m′s)φα1
(~pm) = (2π)

3/2(−i)l
È

ENi
(pm) +mNi

2mNi

βnκ(pm)χ
†
1
2

,m′s
Y−κm(Ωp, ~σ) , (2.20)

where mNi
is the free nucleon mass, ENi

(pm) =
Æ

m2
Ni
+ p2

m and

αnκ(pm) =
ENi
+mNi

2mNi

�

gnκ(pm)−
pm

ENi
+mNi

κ

|κ|
fnκ(pm)

�

, (2.21)

βnκ(pm) =
ENi
+mNi

2mNi

�

pm

ENi
+mNi

gnκ(pm)−
κ

|κ|
fnκ(pm)

�

, (2.22)

with gnκ(pm) and fnκ(pm) defined as in Eqs. (B.4) and (B.5). From Eqs. (2.19) and (2.20),

one observes the positive-, negative-, and crossterm-energy contributions to the cross sec-

tion. They are proportional to |αnκ(pm)|2, |βnκ(pm)|2 and 2αnκ(pm)βnκ(pm) respectively. In

Fig. 2.3 we have plotted these three contributions for the two proton shells in 12C. For

the 1p3/2 shell the positive energy projections are about an order of a magnitude larger

than the cross term and more than two orders than the negative energy projections. The

difference, however, becomes smaller for high momenta. For the 1s1/2 shell, similar fea-

tures emerge for momenta smaller than 300 MeV/c. At higher momenta, however, the

situation changes and the negative-energy components start playing an important role. For

the calculations in this work, we deal with integrations over phase space with a missing
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momentum cut off at 300 MeV/c. Accordingly, we deem it a reasonable approximation to

neglect the negative energy contributions in Eq. (2.18):
�

M (γ,Nπ)
f i

�

RPWIA
≈
∑

m′s

�

M (γ,Nπ)
f i free

�

ms ,m′s
ū(~pm, m′s)φα1

(~pm) , (2.23)

and αnκ(pm) reduces to

αnκ(pm)≈
2mNi

ENi
+mNi

gnκ(pm) . (2.24)
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Figure 2.3 Contributions of the different energy projections to the momentum distribution for the
1s1/2 (left panel) and 1p3/2 (right panel) in 12C. The black curve denotes |αnκ(pm)|2) (proportional
to the positive-energy projection, the blue curve |αnκ(pm)|2 (proportional to the negative-energy
projections, and the green curve 2|αnκ(pm)βnκ(pm)| (proportional to the cross terms).

After squaring the matrix element and summing over the quantum number m of the

bound nucleon wave function, one can use the following property of the spin spherical

harmonics Yκm [83]

∑

m

Yκm(Ωp, ~σ)Y †
κm(Ωp, ~σ) =

(2 j+ 1)
8π

1I2×2 . (2.25)

Finally, by using χ†
1
2

,ms
χ 1

2
,m′s
= δmsm′s

, the free pion production process can be formally de-

coupled from the typical nuclear effects:

∑

f i

|M (γ,Nπ)
f i |2 =

1

2

∑

λ,m,ms

|M (γ,Nπ)
f i |2 ≈ (2π)3

2 j+ 1

4π

ENi
(pm) +mNi

2mNi

|αnκ(pm)|2

×
1

4

∑

λ,ms ,m′s

|
�

M (γ,Nπ)
f i free

�

ms ,m′s
|2 . (2.26)
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The right-hand side of the above equation requires knowledge about the off-shell extrapola-

tion of the pion photoproduction amplitude. For the on-shell situation, the matrix element

for the pion photoproduction process can be linked to the cross section

1

4

∑

λ,ms ,m′s

|
�

M (γ,Nπ)
f i free

�

ms ,m′s
|2≈

4π(s−m2
Ni
)2

mNi
mN

dσγπ

d|t|
, (2.27)

with s = (pµN + pµπ)
2 and t = (qµ − pµπ)

2 the Mandelstam variables of the free process. The

off-shell extrapolation of Eq. (2.27) involves a correction due to the Fermi motion and

the binding of the nucleon on which the photon is absorbed. This can be done in several

different ways and it is not yet clear which of them are the most efficient and reliable. In this

work, we consider photon energies ≥ 1.5 GeV that make off-shell corrections to s relatively

small for typical nucleon momenta. For this reason, we deem it a reasonable approximation

to adopt the Eq. (2.27) for sufficiently high photon energies. After substituting Eqs. (2.26)

and (2.27) in Eq. (2.1), the differential cross section for γ+ A→ (A− 1) + N + π in the

RPWIA reads
�

d5σ

dEπdΩπdΩN

�

RPW IA

≈
MA−1pπpN(s−m2

Ni
)2

4πmNi
qEA

f −1
rec

×
2 j+ 1

4π

�

ENi
(pm) +mNi

�

2mNi

|αnκ(pm)|2
dσγπ

d|t|
. (2.28)

When FSI are included, the above derivation is no longer possible due to the presence

of FFSI(~r) in φD
α . We define a distorted momentum distribution along the lines of Ref. [84]

ρD(~pm) =
1

(2π)3
∑

ms ,m

|ū(~pm, ms)φ
D
α1
(~pm)|2 . (2.29)

When FSI and negative-energy contributions to φD
α1

are neglected, Eq. (2.29) reduces to
2 j+1
4π

ENi
(pm)+mNi

2mNi

|αnκ(pm)|2. Based on this analogy, we write the differential cross section with

FSI as
�

d5σ

dEπdΩπdΩN

�

D

≈
MA−1pπpN(s−m2

Ni
)2

4πmNi
qEA

f −1
rec ρD(~pm)

dσγπ

d|t|
. (2.30)

2.1.2 Pion Electroproduction: The A(e, e′πN) Cross Section

We use the same conventions and notations as in subsec. 2.1.1 in the derivation of the

pion electroproduction cross section. The four-momentum of the virtual photon γ∗ is

qµ(ω,~q) and the z axis lies along ~q. The incoming [scattered] electron has four-momentum
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pµe (Ee,~pe) [p
µ

e′(Ee′ ,~pe′)] and spin s [s′], θe denotes the electron scattering angle. With these

additional notations and conventions, the differential cross section in the laboratory frame

reads [77]

d8σ

dΩe′dEe′dEπdΩπdΩN
=

m2
e pe′

(2π)3pe

MA−1mN pπpN

2(2π)5EA
f −1
rec

∑

f i

�

�

�M (e,e′Nπ)
f i

�

�

�

2
, (2.31)

with the recoil factor frec as in Eq. (2.2) and
∑

f i representing the averaging over initial

electron spins and summing over the spins of the final particles. The invariant matrix

elementM (e,e′Nπ)
f i can be written as

M (e,e′Nπ)
f i = 〈Pµπ , PµN ms, PµA−1JRMR| jµ

e

Q2 Jµ|PµA 0+〉 , (2.32)

with the electron current

jµ = ū(~pe′ , s′)γµu(~pe, s) , (2.33)

Q2 =−qµq
µ and the hadron current Jµ. By defining an auxiliary current

aµ ≡ jµ−
j0
ω

qµ (2.34)

and using current conservation, the following identity can readily be proved:

jµJµ =−aiJi =−aiδi jJ j =−
∑

λ=(x ,y,z)
aiei(λ)e j(λ)J j , (2.35)

where ~e(λ) is the unit vector along the axis λ=
�

x , y, z
�

. After defining the electron density

matrix

ρλλ′ =
∑

ss′
[~e(λ) · ~a]†

�

~e(λ′) · ~a
�

(2.36)

and the hadronic matrix elements

wλ = 〈Pµπ , PµN ms, PµA−1JRMR|~e(λ) · ~J |P
µ
A 0+〉 , (2.37)

we can write for the matrix element

∑

ss′

�

�

�M (e,e′Nπ)
f i

�

�

�

2
=

e2

Q4

∑

λλ′

w†
λρλλ′wλ′ . (2.38)

With the degree of transverse polarization defined as

ε=

�

1+
2q2

Q2 tan2 θe

2

�−1

, (2.39)
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the electron density matrix becomes [85]

ρλλ′ =
Q2

m2
e

1

1− ε









1
2
(1+ ε) 0 −1

2

Æ

2 Q2

ω2ε(1+ ε)
0 1

2
(1− ε) 0

−1
2

Æ

2 Q2

ω2ε(1+ ε) 0 Q2

ω2ε









. (2.40)

After substituting Eq. (2.40) in Eq. (2.38), one can factor out a part containing all the

variables related to the electrons in the differential cross section:

d8σ

dΩe′dEe′dEπdΩπdΩN
= Γ

d5σv

dEπdΩπdΩN
≡ ΓD

∑

f i
|M (γ∗,Nπ)

f i |2 . (2.41)

Here,M (γ∗,Nπ)
f i = 〈Pµ

π
, PµN ms, PµA−1JRMR|Ô |qµ, PµA 0+〉, D = MA−1mN pπpN

4(2π)5E∗γEA
f −1
rec and Γ = α

2π2

Ee′

Ee

E∗γ
Q2

1
1−ε

is the electron flux factor, with the virtual photon equivalent energy E∗γ =
s−M2

A

2MA
, the fine-

structure constant α, and s = (qµ + PµA )
2 one of the Mandelstam variables of the virtual

photoproduction process. The five-fold differential cross section of Eq. (2.41) can be cast

in the following form

d5σv

dEπdΩπdΩN
≡

d5σT

dEπdΩπdΩN
+ ε

d5σL

dEπdΩπdΩN

+ ε
d5σT T

dEπdΩπdΩN
+
p

ε(ε+ 1)
d5σT L

dEπdΩπdΩN
, (2.42)

with

d5σT

dEπdΩπdΩN
=
D
2

∑

ms MR

�

|Jx |2+ |Jy |2
�

,

d5σL

dEπdΩπdΩN
= D

Q2

ω2

∑

ms MR

|Jz|2 ,

d5σT T

dEπdΩπdΩN
=
D
2

∑

ms MR

�

|Jx |2− |Jy |2
�

,

d5σT L

dEπdΩπdΩN
=−
D
2

r

2Q2

ω2

∑

ms MR

�

J∗x Jz + J∗z Jx

�

. (2.43)

As for the photoproduction case, we wish to establish a relation between the invariant

matrix element for virtual-photon pion production on a nucleus (M (γ∗,Nπ)
f i ) and on a free

nucleon (M (γ∗,Nπ)
f i,free ). In comparison with the real photoproduction process, the virtual pho-

ton has an extra degree of polarization and Q2 6= 0. This does not alter the derivation

presented in the previous subsection and after neglecting negative energy contributions,

one arrives at

M (γ∗,Nπ)
f i ≈

∑

ms′

(M (γ∗,Nπ)
f i,free )λ,ms ,ms′

ū(~pm, ms′)φ
D
α (~pm) . (2.44)
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The matrix elementM (γ∗,Nπ)
f i,free is related to the free electroproduction process by

d5σeN

dEe′dΩe′dφ∗πd|t ′|
= Γ′

m2
N

2(2π)2(s′−m2
N)

2

∑

f i
|M (γ∗,Nπ)

f i,free |
2 , (2.45)

where Γ′ = α

2π2

Ee′

Ee

K
Q2

1
1−ε

is the electron flux factor, with the virtual photon equivalent energy

K = s′−m2
N

2mN
. Further, s′ = (pµN + pµπ)

2 and t ′ = (qµ − pµπ)
2 are the Mandelstam variables for

the free process. Starred variables denote center-of-mass values.

With ρD defined in Eq. (2.29) and by making use of Eqs. (2.44) and (2.45), we arrive

at the factorized form for the differential A(e, e′Nπ) cross section:
�

d8σ

dΩe′dEe′dEπdΩπdΩN

�

D

=
Γ
Γ′

MA−1pN pπ(s′−m2
N)

2

2mN EγEA
f −1
rec ρD

d5σeN

dEe′dΩe′d|t|dφ∗π
. (2.46)

We wish to stress that the assumptions made to arrive at this expression, are essentially

identical to those made for the real photon case discussed in the previous section.

2.1.3 Two-nucleon Knockout: The A(γ, N1N2) Cross Section

The two ejected nucleons N1 and N2 have four-momentum Kµi (Eki
,~ki), mass mNi

and spin

msi
, with i = 1 , 2. The four-momentum of the residual nucleus is PµA−2(EA−2,~pA−2) and it has

quantum numbers JR, MR and mass MA−2. Missing momentum is defined as ~Pm =~k1+~k2−~q.

The fivefold differential cross section reads

d5σ

dEk1
dΩN1

dΩN2

=
MA−2mN1

mN2
k1k2

2(2π)5qEA
f ′−1
rec

∑

i f

|M (γ,N1N2)
i f |2 , (2.47)

with the recoil factor f ′rec and invariant matrix elementM (γ,N1N2)
i f given by

f ′rec =
EA−2

EA

�

�

�

�

�

1+
Ek2

EA−2

�

1+
(~k1−~q) ·~k2

k2
2

�

�

�

�

�

�

, (2.48)

M (γ,N1N2)
i f = 〈Kµ1 ms1

, Kµ2 ms2
, PµA−2JRMR|Ô |qµ, PµA 0+〉 . (2.49)

The wave functions of the ejected nucleons are written as

|kµ1 ms1
〉 ≡Ψ(+)~k1,ms1

(~r j) = Ŝ
†

K1N(~r j;~r1, . . . ,~rm 6= j,k, . . . ,~rA)u(~k1, ms1
)ei~k1·~r j (2.50)

|kµ2 ms2
〉 ≡Ψ(+)~k2,ms2

(~rk) = Ŝ
†

K2N(~rk;~r1, . . . ,~rm 6=k, j, . . . ,~rA)u(~k2, ms2
)ei~k2·~rk , (2.51)

with ŜKi N an operator that accounts for the FSI with the residual nucleons. The FSI between

the two ejected nucleons is not included in the above approach. We neglect these FSI, as the
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kinematics in the experiments we compare to are chosen so that the two ejected nucleons

move back-to-back in the c.m. frame. The final A-nucleon wave function is constructed by

antisymmetrizing Ψ(+)~k1,ms1

and Ψ(+)~k2,ms2

with the wave function for the residual nucleus ΨJR,mR
A−2 :

|Kµ1 ms1
, Kµ2 ms2

, PµA−2JRMR〉 ≡Ψ
~k1ms1 ,~k2ms2
A (~r1, . . . ,~rA) =

Â
h

Ŝ †
K1N(~r1;~r3, . . . ,~rA)u(~k1, ms1

)ei~k1·~r1

×Ŝ †
K2N(~r2;~r3, . . . ,~rA)u(~k2, ms2

)ei~k2·~r2ΨJR,mR
A−2 (~r3, . . . ,~rA)

i

. (2.52)

The wave function of the impinging photon is again as in Eq. (2.5).

Knockout of a correlated pair

First we describe the one-step reaction process of Fig. 2.4 in which the photon interacts

directly with a correlated pair. The two nucleons form a high density region in the nucleus,

with high relative momentum and a small distance separating them. By interacting with

one of the nucleons, the photon breaks up the pair. Due to the high relative momentum,

the second nucleon can also be ejected from the nucleus and detected if the kinematics is

carefully tuned.

Figure 2.4 Diagram depicting the A(γ, N1N2) reaction as the breakup of a correlated nucleon-
nucleon pair. The photon interacts in a one-step process with one of the nucleons in the correlated
pair and the two nucleons are subsequently ejected out of the nucleus. The dotted red and blue
lines represent the FSI with the residual spectator nucleons.

After using the antisymmetrization of the incoming and outgoing wave functions and

assuming spin independent, elastic and mildly inelastic FSI, we can write the invariant ma-

trix element in lowest order as (with α1 and α2 the quantum numbers of the two nucleons
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forming the initial pair):

M (γ,N1N2)
i f ,pair ≈

∫

d~r

∫

d~r1

∫

d~r2

�

u†(~k1, ms1
)u†(~k2, ms2

)e−i~k1·~r1 e−i~k2·~r2−

u†(~k2, ms2
)u†(~k1, ms1

)e−i~k2·~r1 e−i~k1·~r2

�

(δ(~r −~r1) +δ(~r −~r2))

× ei~q·~rεµ(λ)γ0Jµ(~r)φα1
(~r1)φα2

(~r2)FFSI(~r1,~r2) . (2.53)

Here, Jµ represents the electromagnetic coupling of the photon to a bound nucleon, and

the FSI factor FFSI(~r1,~r2) is defined as

FFSI(~r1,~r2) =

∫

d~r3 . . .

∫

d~rA|φα3
(~r3)|2 . . . |φαA

(~rA)|2

× ŜK1N(~r1;~r3, . . . ,~rA)ŜK2N(~r2;~r3, . . . ,~rA) . (2.54)

We now introduce the c.m. and relative coordinates (~R = ~r1+~r2

2
, ~r12 = ~r1 − ~r2) of the pair

and assume

FFSI(~R+
~r12

2
,~R−

~r12

2
)≈F FSI (~R,~R)≡FFSI(~R) (2.55)

φα1
(~R+

~r12

2
)φα2
(~R−

~r12

2
)≈ φα1

(~R)φα2
(~R) (2.56)

Jµ(~R±
~r12

2
)≈ Ξµ(~R)g(~r12)≈ Ξµg(~r12) . (2.57)

In Eq. (2.57) we have factorized the photon-pair coupling into a product of the photon-

nucleon coupling and a correlation function. As we have set ~r12 ≈ 0, Eq. (2.56) requires

that the two correlated nucleons reside in a relative S state [86]. This is a reasonable

approximation as investigations of the 16O(e, e′pp) reaction at the electron accelerators in

Mainz [87, 88] and Amsterdam [89–91] have clearly shown that pairs of protons are solely

subject to short-range correlations when they reside in a relative S state under conditions

corresponding with relatively small c.m. momenta P (or, the initial protons are very close

and moving back-to-back).

For the transition to the 14C ground state in the 16O(e, e′pp) reaction, the L = 0 com-

ponent of the c.m. motion of the pair is associated with a relative 1S wave function. For

transitions to the ground state and 1+ excitation, the L = 1 component is associated with a

relative 1P wave function. Consequently, one can determine the quantum numbers of the

relative wave function of the pair from the pm (which is equal to the pair c.m. momentum

in the plane-wave limit) dependence of the differential cross section. In Fig. 2.5, data

from MAMI [88] and calculations by the Ghent group [87] for these transitions are shown.

Calculations for the reaction whereby the final nucleus is created in the 1+ state show the
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dominance of the two-body currents for a P-wave pair, while the one-body currents associ-

ated with SRC contribute only marginally. For the transition to the ground state, the c.m.

momentum dependence shows the dominance of relative S-pairs for low c.m. momenta.

The one-body currents clearly form the biggest contribution for these S-pairs. At higher

c.m. momenta, the relative P-pairs dominate, and two-body currents form the dominating

contribution. In Fig. 2.6, data for the ground state transition measured at NIKHEF [91] and

calculations in the Ghent [92] and Pavia [93]model are shown that confirm these findings.

Figure 2.5 Cross section for transition to the ground state (left panel) and 1+ excitation (right
panel) of 14C as a function of missing pair momentum, for the reaction 16O(e, e′pp). In the left panel,
the dashed curve shows the results of a distorted-wave calculation with only two-body currents.
The solid (dot-dashed) curve is the result of a distorted-wave (plane-wave) calculation that includes
both one- and two-body currents. In the left panel, the dashed curve shows a calculation that
only includes two-body currents. The solid (dot-dashed) curve shows a distorted-wave (plain-wave)
calculation that accounts for both one- and two-body currents. Data from [88]. Figure taken from
Ref. [87].

After defining

ηD
α1,α2
(~P) =

∫

d~Re−i~P·~RFFSI(~R)φα1
(~R)φα2

(~R) (2.58)

g(~p) =

∫

d~re−i~p·~r g(~r) , (2.59)

we can write the matrix element as

M (γ,N1N2)
i f ,pair ≈

�

u†(~k1, ms1
)u†(~k2, ms2

)− u†(~k2, ms2
)u†(~k1, ms1

)
�

×
�

g(
~k1−~k2−~q

2
)γ0Ξα1

µ + g(
~k1−~k2+~q

2
)γ0Ξα2

µ

�

εµ(λ)ηD
α1,α2
(~Pm) . (2.60)

The superscript αi in Ξαi
µ denotes the quantum numbers of the nucleon that absorbs the

photon. After the choice of the appropriate Ξµ and g(~r) functions we have all the ingredi-

ents to compute Eq. (2.60) readily available. For Ξµ, we use the CC2 form of Ref. [94] and
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Figure 2.6 Cross sections for the transition to the ground state of 14C as a function of the missing
pair momentum, for the reaction 16O(e, e′pp) at three values of ω. Curves are obtained in the
Pavia model (top) [93] and Ghent model (bottom panels) [92]. Solid curves include one- and two-
body currents. Dashed (dotted) curves represent the contribution of one-body (two-body) currents.
Figure taken from Ref. [91].

we impose the Coulomb gauge. For g(r), the correlation function of Ref. [95] is used. The

motivation of this choice will be presented in subsec 2.4.

Hard Rescattering Process

Besides the direct knockout of a correlated pair discussed above, the A(γ, N1N2) process

receives contributions from a two-step reaction mechanism sketched in Fig. 2.7. A nucleon

obtains high momentum by absorption of the photon and propagates through the nucleus.

On its way out of the nucleus a hard rescattering with one of the residual nucleons occurs

(besides the soft FSI) and the two nucleons are both ejected from the nucleus. We employ

the same notations as in the previous subsections. In addition, we define the nucleon

propagator in the medium whereby we account for soft FSI mechanisms

DD
N (~r0−~r j) = ŜN N(~r j,~r0;~r1, . . . ,~rm 6= j,k, . . . ,~rA)DN(~r0−~r j) , (2.61)

and a two-body operator describing the hard rescattering process

O (2) =
∑

k 6= j

Ô(~r0,~rk) . (2.62)
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Figure 2.7 Diagram representing the A(γ, N1N2) as a two-step hard rescattering process. The red,
blue and black dotted lines represent the FSI with the residual spectator nucleons. The dashed green
line is the nucleon propagator between the photon interaction and the hard rescattering process.

In the above two equations ~r j is the vertex of the photon interaction. Further, (~r0,~rk)

determine the spatial coordinates of the hard rescattering process. In Eq. (2.61) we ignore

medium modifications to the DN(~r0−~r j) propagator, and put the pole of the propagator on

the free nucleon mass shell . With these notations, the matrix element (2.49) reads:

M (γ,N1N2)
i f ,HRM =

∫

d~r0 . . . d~rA

�

Ψ
~k1ms1 ,~k2ms2
A (~r0,~r2, . . . ,~rA)

�†∑

k 6= j

Ô(~r0,~rk)

×
∑

j

DD
N (~r0 −~r j)Γ

µ(~r j)εµ(λ)e
i~q·~rkΨg.s.

A (~r1, . . . ,~rA) . (2.63)

Due to antisymmetrization, we can take one term in the sum of both operators and multiply

Eq. (2.63) with A for the photon coupling vertex and (A− 1) for the hard rescattering

operator. If we take α1 and α2 for the quantum numbers of the ejected nucleons and again

assume spin independent, elastic and mildly inelastic FSI, we obtain (with Dirac indices

written out explicitly to avoid confusion)

M (γ,N1N2)
i f ,HRM ≈

A(A− 1)(A− 2)!
A!

∫

d~r0d~r1 · · · d~rA|φα3
(~r3)|2 . . . |φαA

(~rA)|2

×
h

u†
a(~k1, ms1

)e−i~k1·~r0u†
b(~k2, ms2

)e−i~k2·~r2ŜK1N(~r0;~r3, . . . ,~rA)ŜK2N(~r2;~r3, . . . ,~rA)

−u†
a(~k2, ms2

)e−i~k2·~r0u†
b(~k1, ms1

)e−i~k1·~r2ŜK1N(~r2;~r3, . . . ,~rA)ŜK2N(~r0;~r3, . . . ,~rA)
i

× Ôab;cd(~r0,~r2)ŜN N(~r0,~r1;~r3, . . . ,~rA)
�

DN(~r0−~r1)
�

ce

�

Γµ(~r1)
�

e f εµ(λ)e
i~q·~r1

×
h

�

φα1
(~r1)
�

f

�

φα2
(~r2)
�

d
−
�

φα2
(~r1)
�

f

�

φα1
(~r2)
�

d

i

. (2.64)



2.1. KINEMATICS AND OBSERVABLES 29

To further simplify Eq. (2.64), we define the FSI factor

FFSI(~r0,~r1,~r2) =

∫

d~r3 . . .

∫

d~rA|φα3
(~r3)|2 . . . |φαA

(~rA)|2

× ŜK1N(~r0;~r3, . . . ,~rA)ŜK2N(~r2;~r3, . . . ,~rA)ŜN N(~r0,~r1;~r3, . . . ,~rA) . (2.65)

We adopt the zero-range approximation for the hard nucleon-nucleon rescattering allowing

us to replace the two coordinates ~r0 and ~r2 of the two interacting protons with one collision

point. Applying this to Eq. (2.65):

FFSI(~r0,~r1,~r2)≈FFSI(~r2,~r1,~r2)≡FFSI(~r1,~r2) (2.66)

We now write the free nucleon propagator and hard rescattering operator in momentum

space

DN(~r0−~r1) =

∫

d~P

(2π)3
ei~P·(~r0−~r1)DN(~P) , (2.67)

Ô(~r0,~r2) =

∫

d~p

(2π)3
ei~p·(~r2−~r0)Ô(~p) . (2.68)

After eliminating the ~r0 integration and with ~pm1
≡ ~P −~q and ~pm2

≡~k1+~k2− ~P, the matrix

element reads

M (γ,N1N2)
i f ,HRM ≈

∫

d~r1

∫

d~r2

∫

d~P

(2π)3
�

u†
a(~k1, ms1

)u†
b(~k2, ms2

)Ôab;cd(~P −~k1)

−u†
a(~k2, ms2

)u†
b(~k1, ms1

)Ôab;cd(~P −~k2)
��

DN(~P)
�

ce

�

Γµ(~r1)
�

e f εµ(λ)

× e−i~pm1
·~r1 e−i~pm2

·~r2

h

�

φα1
(~r1)
�

f

�

φα2
(~r2)
�

d
−
�

φα2
(~r1)
�

f

�

φα1
(~r2)
�

d

i

×FFSI(~r1,~r2) . (2.69)

One of the terms entering in Eq. (2.69) is shown in Fig. 2.8.

As a last step we neglect the negative-energy projections in the free nucleon propagator.

The energy in their denominator P0+ EP (with P0 = q+
Æ

m2
N + p2

m1
and EP =

p

m2
N + P2)

will be large compared to the one of the positive energy projections:

DN(~P) =−
mN

EN

∑

sP

�

u(~P, sP)ū(~P, sP)
P0− EP + iη

+
v(~P, sP)v̄(~P, sP)
P0+ EP − iη

�

≈ −
mN

EN

∑

sP
u(~P, sP)ū(~P, sP)

P0− EP + iη
. (2.70)

Finally, we insert a complete set
∑

sm

�

u(~pm2
, sm)ū(~pm2

, sm)− v(~pm2
, sm)v̄(~pm2

, sm)
�

in Eq.

(2.69). After neglecting the negative energy contributions of this complete set, the matrix
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Figure 2.8 Schematic representation of one of the terms entering in Eq. (2.69). Dirac indices are
shown in blue. The other three terms are obtained by interchanging α1↔ α2 and ~k1↔~k2.

element of Eq. (2.69) can be written as

M (γ,N1N2)
i f ,HRM ≈−

∑

sm,sP

∫

d~P

(2π)3
mN

EN

�

u†
a(~k1, ms1

)u†
b(~k2, ms2

)Ôab;cd(~P −~k1)

−u†
a(~k2, ms2

)u†
b(~k1, ms1

)Ôab;cd(~P −~k2)
�

× uc(~P, sP)ud(~pm2
, sm)

×
1

P0− EP + iη

h

< J D
α1,α2
(~pm1

,~pm2
,λ)>−< J D

α2,α1
(~pm1

,~pm2
,λ)>

i

. (2.71)

In this last equation

< J D
α1,α2
(~pm1

,~pm2
,λ)>= εµ(λ)

∫

d~r1

∫

d~r2e−i~pm1
·~r1 e−i~pm2

·~r2

× [ū(~P, sP)Γ
µ(~r1)φα1

(~r1)][ū(~pm2
, sm)φα2

(~r2)]FFSI(~r1,~r2) . (2.72)

For a real incoming photon, the denominator of the propagator in Eq. (2.70) can never

reach on-the-mass-shell conditions and the integration poses no problem. For a virtual

photon the denominator of the propagator can be split into two parts, one for the on-shell

contribution (yielding a delta function) and one for the off-shell contribution (yielding a

principal value integration) [96]:

1

P0− EP + iη
=−iπδ(P0− EP) +P

�

1

P0− EP

�

. (2.73)

We can also relate the hard rescattering operator to the free NN scattering amplitudeM NN :

M NN = ūa(~k1, ms1
)ūb(~k2, ms2

)DNN
ab;cduc(~k3, ms3

)ud(~k4, ms4
)

≈ u†
a(~k1, ms1

)u†
b(~k2, ms2

)γ0
aeγ

0
b f Ôab;cduc(~k3, ms3

)ud(~k4, ms4
) , (2.74)
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were we neglected medium effects in the last step. If all four legs of the NN scattering

amplitude are on-shell, the amplitude can be parametrized in terms of five Fermi invariants

as [97]

DNN
ab;cd =FS(s, t)δacδbd +FV (s, t)γac · γbd+

FT (s, t)σµνac (σµν)bd +FP(s, t)γ5
acγ

5
bd +FA(s, t)(γ5γ)ac · (γ5γ)bd , (2.75)

with s and t the Mandelstam variables. The Fermi invariants in Eq. (2.75) can be calculated

from five helicity amplitudes as is covered in Appendix D. For the calculations in this thesis

we use the helicity amplitudes available from SAID [98, 99], in function of s and cosθc.m..

For the nucleon-nucleon rescattering shown in Fig. 2.7, both the incoming nucleons are

off-the-mass-shell. For the second bound nucleon, the insertion of positive energy projec-

tions in Eq. (2.71) has put this incoming nucleon line on the positive-energy mass shell.

The positive-energy contributions of the nucleon propagator, however, still include off-shell

behavior. A dynamical model describing the off-shell behaviour of the scattering amplitudes

in the energy range accessible at JLab is currently not available. To estimate these effects

we use the prescription for the off-shell behavior of the amplitude proposed in [96]. The

form of Eq. (2.75) is kept, although additional invariants are possible with an off-shell

nucleon. The center of mass angle can be derived from the three Mandelstam variables:

cosθc.m. =
t − u

p

s− 4m2

q

(4m2−t−u)2

s
− 4m2

. (2.76)

The Fermi invariants become

Fi(s, t)→Fi(s, t, u)FN(s+ t + u− 3m2) for i ≡ S, V, T, Pand A , (2.77)

where

FN(p
2) =

(Λ2
N −m2)2

(p2−m2)2+ (Λ2
N −m2)2

. (2.78)

is an off-shell nucleon form factor with a cutoff mass ΛN = 1.675 GeV. With all these

ingredients, we can numerically compute the matrix element of Eq. (2.71).

2.2 Final-State Interactions

2.2.1 Relativistic Multiple-Scattering Glauber Approximation

The Glauber approach can be justified when the wavelength of the outgoing hadron is suf-

ficiently small in comparison to the typical interaction length with the residual nucleons.
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In the context of A(e, e′p) reactions [74] it was shown that the Glauber model represents

a realistic approach to FSI for proton kinetic energies down to about 300 MeV. This cor-

responds to proton de Broglie wavelengths of the order of 1.5 fm. For pions comparable

wavelengths are reached for kinetic energies of the order of 700 MeV.

A relativistic extension of the Glauber model, dubbed the relativistic multiple-scattering

Glauber approximation (RMSGA), was introduced in Ref. [73]. In the RMSGA, the wave

function for the ejected nucleon and pion is a convolution of a relativistic plane wave and

a Glauber eikonal phase operator that accounts for FSI mechanisms. In Glauber theory the

assumption is made that a fast-moving particle interacts through elastic or mildly inelastic

collisions with frozen point scatterers in a target. Scattering angles are assumed small and

each of the point scatterers adds a phase to the wave function (EA). This added phase is di-

rectly related to nucleon-nucleon or pion-nucleon scattering data through the introduction

of a profile function.

As a starting point in the derivation of the RMSGA FSI-factor in Eqs. (2.6) and (2.7),

we consider the scattering amplitude of a Dirac particle subject to a Lorentz scalar [Vs(r)]

and vector [Vv(r)] potential in the EA [100]:

Fms ,m′s
(~ki,~k f , E) =−

mN

2π
〈ψ(+)~k f ,m′s

| (βVs + Vv) | Φ~ki ,ms
〉 , (2.79)

with ψ(+)~k f ,m′s
the relativistic scattered state in the EA and Φ~ki ,ms

a Dirac plane wave. After

some algebraic manipulations, Eq. (2.79) can be transformed into [100]

Fms ,m′s
(~ki,~k f , E) = 〈m′s |

K

2πi

∫

d~b ei ~∆·~bΓN ′N(~b) | ms〉 , (2.80)

with

~K =
1

2
(~ki +~k f ) , (2.81)

~∆=~ki −~k f . (2.82)

~K lies along the z-axis and the impact parameter vector ~b is perpendicular to it. In Eq.

(2.80), we introduced the profile function ΓN ′N(~b). The profile function is related to the

eikonal phase χ(~b) occurring in the scattered wave function via

ΓN ′N(~b) = 1− eiχ(~b) . (2.83)

The eikonal phase depends on the scalar and vector potentials and their derivatives [100].

In the Glauber approximation, the profile function is related to the nucleon-nucleon scatter-

ing parameters and no knowledge about the scalar and vector optical potentials is required.
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For relativistic pion-nucleon scattering an analogous expression to Eq. (2.80),

F(~ki,~k f , E) =
K

2πi

∫

d~bei(~ki−~k f )·~bΓπN(~b) , (2.84)

can be derived in a straightforward manner as is shown in App. C. Thus, by applying the

following derivation to pion-nucleon scattering, one will arrive at the same conclusion for

the pion FSI.

The most general form of the NN -scattering amplitude, assuming parity conservation,

time-reversal invariance, the Pauli principle and isospin invariance, can be written as the

sum of five invariant amplitudes [101]:

M NN = A(~∆)+ B(~∆)(~σ1+ ~σ2) · n̂+ C(~∆)(~σ1 · n̂)(~σ2 · n̂)

+ D(~∆)(~σ1 · m̂)(~σ2 · m̂) + E(~∆)(~σ1 · l̂)(~σ2 · l̂) . (2.85)

In this last equation, n̂ =
~ki×~k f

|~ki×~k f |
, m̂ =

~ki−~k f

|~ki−~k f |
, l̂ =

~ki+~k f

|~ki+~k f |
and ~σ1, ~σ2 are the nucleon spin

operators. As one can infer from Eq. (2.85), the amplitude consists of a central term (A(~∆)),

a spin-orbit term (B(~∆)) and another three spin-dependent terms. The five invariants of

Eq. (2.85) can be related to the Fermi invariants of Eq. (2.75), and a transformation

between the two is straightforward [97]. In theory, a complete phase-shift analysis of the

NN scattering data can determine all five amplitudes entering in Eq. (2.85). In the analysis

of proton-nucleus scattering with proton momenta of 1 GeV/c, the spinless approximation

to Eq. (2.85) - whereby only the A(~∆) term is kept - was very successful [101]. We apply

this approximation and parametrize the scattering amplitude as

F(~∆)≈ A(~∆= 0)e−
β2

N ′N
∆2

2 , (2.86)

with βN ′N the slope parameter. This Gaussian parametrization is based on the diffractive

nature of the elastic cross section for high energy nucleon-nucleon scattering. At GeV mo-

menta, the elastic cross section is extremely forward peaked and drops exponentially over

many orders. By employing the optical theorem Im F(θ = 0,φ = 0) = kσtot

4π
, we can write

F(~∆)≈
kσtot

N ′N

4π
(εN ′N + i)e−

β2
N ′N

∆2

2 , (2.87)

with σtot
N ′N the total cross section and εN ′N the ratio of the real to imaginary part of the

amplitude. We can now obtain an expression for the profile functions by inverting the

Fourier transform of Eqs. (2.80) and (2.84):

ΓiN(~b) =
σtot

iN (1− iεiN)

4πβ2
iN

exp

�

−
~b2

2β2
iN

�

(with i = π or N ′) . (2.88)
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Figure 2.9 Differential cross sections for elastic proton-nucleus scattering at 1 GeV. Figure taken
from Ref. [102].

To extend this formalism to the multiple-scattering case, we consider the soft interac-

tions of a fast particle with a composite target. In Fig. 2.9, we show differential cross

section data for the elastic scattering of 1 GeV protons with several nuclei. In Fig. 2.10, we

show similar results for the elastic scattering of 800 MeV pions with 12C and 40Ca. These

figures clearly illustrate that these cross sections are extremely forward peaked. The cross

section drops a few orders before reaching θc.m. = 10o, corresponding with lab angles be-

tween 9 and 10 degrees for the nuclei considered. Therefore, it seems plausible to assume

that the soft interactions of the fast ejected particle will only cause small-angle changes

in the trajectory of the fast particle. The high-momentum scattered particle is assumed to

traverse the target in a very short time. This allows us to neglect the motion of the target
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Figure 2.10 Differential cross sections for elastic pion-nucleus scattering at 800 MeV with 12C and
40Ca nuclei. Figure taken from Ref. [103].

particles, the so-called frozen approximation. The interactions with the scattering centers

are supposed to occur through two-body spin-independent interactions as we described be-

fore. Charge exchange effects between the fast ejectile and the target constituents are also

neglected. The one-dimensional nature of the relative motion, together with the frozen ap-

proximation, neglect of three-body forces and longitudinal momentum transfer, allows us

to add the eikonal phases of all the individual scattering centers along the trajectory of the

fast particle. This yields the following expression for the Glauber amplitude of a multiple-

scattering event from a A− 1-particle target with initial state | i〉 to a final state | f 〉 [104]:

F(~∆) =
iK

2π

∫

d~b ei~b·~∆〈 f | Γtot
iN (~b,~b2, . . . ,~bA) | i〉 , (with i = π or N ′) (2.89)

with ~b the impact parameter of the ejectile and ~b j those of the scattering targets. The total
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profile function is defined as

Γtot
iN (~b,~b2, . . . ,~bA) = 1− eiχ tot(~b,~b2,...,~bA) =

1− ei
∑A

j=2 χ
j(~b−~b j) = 1−

A
∏

j=2

(1− Γ j
iN(~b−~b j) , (with i = π or N ′) (2.90)

whereby the last step requires the principle of phase-shift additivity. This results in the

following expression for the Glauber multiple-scattering eikonal phase for the FSI in the

(A − 1) residual nucleus:

cSiN(~r,~r2, . . . ,~rA) =
A
∏

j=2

�

1−ΓiN(~b−~b j)θ(z j − z)
�

(with i = π or N ′) . (2.91)

Here, ~r j(~b j, z j) are the coordinates of the residual nucleons and ~r(~b, z) specifies the inter-

action point with the (virtual) photon. In Eq. (2.91), the z axis lies along the path of the

ejected particle i (the proton or pion) and ~b is perpendicular to this path. The Heaviside

step function θ guarantees that only nucleons in the forward path of the outgoing particle

contribute to the eikonal phase.

The parameters σtot
iN , βiN and εiN used in the parametrization of the profile functions

depend on the momentum of the outgoing nucleon or pion i. For i = N ′, we determined

the parameters by performing a fit [73] to the N ′N −→ N ′N databases from the Particle

Data Group (PDG) [105]. For the pion, σtot
πN was fitted to data collected by PDG [105]. The

analysis of the slope parameter in Ref. [106] was used for the βπN fits. Fits provided by

SAID [107, 108] and data from PDG [105] were used in constructing the fits for επN . The

fits for σtot
iN ,βiN , and εiN of Figs. 2.11, 2.12, and 2.13 are the result of a χ2 minimization

of the data against a a n-th degree polynomial (with n ≤ 10). An alternative way of

determining βπN , is via the relation

β2
πN =

(σtot
πN)

2(1+ ε2
πN)

16πσel
πN

, (2.92)

with σel
πN the elastic cross section. Fits for σel

πN to data from PDG [105] are also presented

in Fig. 2.11. The two sets for the βπN parameter in Fig. 2.12 do not produce significantly

different results for the numerical calculations presented here. We use the χ2 fit for βπN in

all calculations presented in this work.

The Glauber operator of Eq. (2.91) is an A-body operator. As a consequence, it requires

integrations over all spectator nucleon coordinates in Eqs. (2.12), (2.54), and (2.65) which

is computationally very demanding, in particular for heavy target nuclei. In computing the

A(γ(∗), Nπ) amplitude and the single-step contribution to A(γ, N1N2) (Fig. 2.4), a product of
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Figure 2.11 The pion lab-momentum dependence of the data [105] and adopted fits for the total
and elastic cross section for π−-p (upper panel) and π+-p (lower panel) scattering.
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Figure 2.12 The pion lab-momentum dependence of the data [106] and fits for the β2
pπ parameter

for π−-p (upper panel) and π+-p (lower panel) scattering. Full curves are a χ2 fit to the data,
whereas the dashed curves result from Eq. (2.92).
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Figure 2.13 The pion lab-momentum dependence of the ratio of the real to imaginary part of the
π−-p (upper panel) and π+-p (lower panel) amplitudes. The diamonds represent an analysis of the
data by the George Washington University group [107, 108], whereas the solid circles are from PDG
[105]. The solid line is the fit to the data that are used in the numerical calculations.
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two Glauber phases is involved. Accordingly, the cylindrical symmetry is lost. This increases

the computational cost an order of magnitude compared to single hadron knockout of e.g.

the A(e, e′p) type. The HRM contribution to the A(γ, N1N2) process, via the intermediate

nucleon propagator, adds three extra spatial degrees of freedom and a third Glauber phase

to the problem. The computation time for these calculations soars to new heights. A

Romberg algorithm is used to perform the integrations over the spatial coordinates in the

FSI factors.

2.2.2 Relativistic Optical Model Eikonal Approximation

For nucleons with a kinetic energy lower than about 300 MeV, the assumptions underlying

the Glauber formalism are no longer justified, and an alternative method to model FSI is

required. Under those circumstances our framework provides the flexibility to adopt the

relativistic optical model eikonal approximation (ROMEA) [75]. In the ROMEA approach,

the wave function ψ(+)~pN ,ms
of a nucleon with asymptotic energy E =

p

p2
N +m2

N after scat-

tering in a scalar [Vs(r)] and vector [Vv(r)] spherical potential is a solution of the Dirac

equation:

Hψ(+)~pN ,ms
(~r) =

�

~α · ~̂p+ β(MN + Vs(r))
�

ψ
(+)
~pN ,ms
(~r) = (E − Vv(r))ψ

(+)
~pN ,ms
(~r) , (2.93)

with ~̂p the momentum operator. In the relativistic distorted wave impulse approximation

(RDWIA), the scattering wave function ψ(+)~pN ,ms
(~r) is expanded in partial waves and solved

numerically. At higher energies, the partial-wave procedure gets cumbersome and the

eikonal approximation is the by far the most economical way of calculating things. In the

EA, we can readily apply the small angle approximation and the following approximation

for the momentum operator is made [72]:

p̂2 = [(~̂p− ~K) + ~K]2 ≈ 2~K · ~̂p− K2 , (2.94)

with ~K = 1
2
(~ki+~k f ) the average of the initial and final momentum of the scattered particle.

In the small angle approximation, ~K ≈ ~pN and points along the z axis. By using Eq. (2.94),

the differential equation for the upper component of the scattering wave function is trans-

formed into a first order one. After adopting the eikonal ansatz for the upper component

(with N a normalization factor)

u(+)~pN ,ms
(~r)≡ Nei~pN ·~r eiŜN ′N (~r)χ 1

2
ms

, (2.95)

the scattering wave function adopts the following form [100]

ψ
(+)
~pN ,ms
(~r) =

r

E +mN

2mN

�

1
1

E+mN+Vs(r)−Vv(r)
~σ · ~̂p

�

ei~pN ·~r eiŜN ′N (~r)χ 1
2

ms
, (2.96)
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with the eikonal phase determined by

iŜN ′N(~b, z) =−i
mN

K

∫ z

−∞
dz′
�

Vc(~b, z′) + Vso(~b, z′)
�

~σ · (~b× ~K)− iKz′
�

�

. (2.97)

Eq. (2.96) differs from a plane-wave solution in two ways. The eikonal phase eiŜN ′N (~r)

includes the interaction of the nucleon with the nucleus via potential scattering and the

lower component of the Dirac spinor is dynamically enhanced due to the combination of

the scalar and vector potentials Vs−Vv < 0. The central and spin-orbit potentials Vc and Vso

are functions of Vs and Vv and their derivatives:

Vc(r) = Vr(r) +
E

mN
Vv(r) +

V 2
s (r)− V 2

v (r)

2MN
,

Vso(r) =
1

2MN
�

E +MN + Vs(r)− Vv(r)
�

1

r

d

dr
�

Vv(r)− Vs(r)
�

. (2.98)

For protons in the intermediate energy range (Tp ≈ 500 MeV), calculations with the EA

are in very good agreement with exact partial wave solutions [100]. The ROMEA has been

successfully applied to A(e, e′p) [109, 110] and A(p, 2p) [75] reactions.

In the practical implementation of the ROMEA model we have made a few additional

assumptions. The dynamical enhancement of the lower components of the scattering wave

function (2.96) constitutes a rather small effect. Indeed, at low momenta the lower com-

ponents are small compared to the upper components due to the presence of ~̂p in ~σ · ~p.

At higher momenta, (Vs − Vv) is small in comparison to (E +mN). In the ROMEA calcula-

tions presented in this work, this enhancement is neglected, though it is straightforward to

include it (at the cost of increasing the computing time). The operator ~̂p was substituted

by the asymptotic value ~pN . Finally, as collisions were assumed spin independent in Eq.

(2.10), the spin-orbit potential Vso in Eq. (2.97) is neglected. This yields the following

phase factor entering in Eq. (2.12):

Ŝ ROMEA
N ′N (~r) = e−i mN

pN

∫+∞
zN

dzVc(~bpN ,z) , (2.99)

where the integration over z lies along the outgoing momentum ~pN .

In contrast to the Glauber eikonal phase, the optical potential eikonal phase of Eq.

(2.99) depends solely on the coordinate ~r that defines the interaction point. As a conse-

quence, it can be taken out of all the integrations in Eq. (2.12) and the cylindrical symmetry

of the pion Glauber eikonal factor is retained, hereby considerably reducing the cost of com-

puting the total FSI factor FFSI. For the numerical evaluation of the ROMEA phase factor,

we made use of the proton-4He optical potential of van Oers et al. [111]. The optical po-

tential contains a Coulomb term, a central and l-dependent term with a Wood-Saxon form
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factor and a spin-orbit term with a Thomas form factor. The p−4He optical potential of Ref.

[111] contains a total of 14 adjustable parameters that are determined by fitting 4He(p, p)

data for 85 ≤ Tp ≤ 580 MeV. For heavier nuclei, we use the pA optical potentials as they

were determined in the so-called global (S − V ) parametrization of Cooper et al. [80]. It

uses the scalar-vector model of Eq. (2.93) with complex potentials containing a volume

and a surface term. It serves proton energies from 20 to 1040 MeV for targets 12C, 16O.
40Ca, 90Zr and 208Pb.

2.3 Color Transparency

We implement color transparency effects in the usual fashion by replacing the total cross

sections σtot
iN in the profile functions of Eq. (2.88) with effective ones proposed by Farrar et

al. [112]. The latter induce some reduced pion-nucleon and nucleon-nucleon interaction

over a typical length scale lh corresponding with the hadron formation length. As suggested

by pQCD [113], the cross section is assumed to be scaled by the ratio of the transverse size

of the quark system to the average size of the hadron < b > (i = π or N ′)

σeff
iN =

b2(Z )
< b2 >

σtot
iN for z ≤ lh , (2.100)

with Z the distance from the interaction point. At the point of interaction, the hadron is

supposed to have a transverse area of
n2<k2

t>

H
, where n is the number of elementary fields (2

for the pion, 3 for the nucleon), kt = 0.350 GeV/c is the average transverse momentum of a

quark inside a hadron, andH is the hard-scale parameter (or virtuality) that governs the CT

effect. H equals the momentum transfer t = (qµ−pµπ)
2 (pion CT) or u= (qµ−pµN)

2 (nucleon

CT) for pion photoproduction (see Fig. 2.14) and Q2 for pion electroproduction. To describe

the expansion along the formation length lh, two models are described in the work of Ref.

[112]. The first is a naive model using partons with a relative velocity approaching the

velocity of light. This gives us b(Z ) ∼ t ∼ (E/m)−1Z , with (E/m)−1 the time-dilatation

factor for the lab-frame. Based on semi-classical arguments, the formation length becomes

lh = (E/m)−1(σtot
iN/π)

1/2. Inspired by pQCD, an alternate prescription to determine lh is

proposed stemming from a behaviour called quantum diffusion. It is theoretically justified

for small times, when the transverse area of the system is small enough to apply the leading-

logarithmic approximation to pQCD [23, 24]. Taking into account the asymptotically most

important energy denominator in this leading-logarithmic approximation leads to b2 ∼ Z .

The formation length is determined by the time τ associated with the quantum fluctuation

of the PLC to the normal hadron:

lh ≈ τ≈<
1

EPLC− Ei
>≈ 2p/∆M2 , (2.101)
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with p the momentum of the final hadron and ∆M2 the mass squared difference between

the intermediate prehadron and the final hadron state. The value of ∆M2 is an unde-

termined parameter and in itself a simplification of the process, as a process with high

momentum transfer will produce a set of configurations of different masses. Theoretical

arguments do not yield a consistent value for ∆M2, but a lower limit can be placed e.g. for

the nucleon by taking mN +mπ for the mass of the intermediate prehadron. This yields a

value of∆M2 = 0.93 GeV2. In this work, we adopt the values∆M2 = 1 GeV2 for the proton

and ∆M2 = 0.7 GeV2 for the pion. Despite the fact that the order of magnitude of these

values can be founded on very general principles, their precise values should be interpreted

as educated guesses and their precise determination is awaiting experimental information,

like nuclear transparency measurements.

Figure 2.14 The virtuality that determines the formation length for the ejected nucleon (blue) and
pion (red) in A(γ, Nπ).

The arguments outlined above, lead us to the following formula for the effective cross

sections used in the model:

σeff
iN

σtot
iN

=
���Z

lh

�β

+
< n2k2

t >

H

�

1−
�Z

lh

�β
�

�

θ(lh−Z ) + θ(Z − lh)
�

. (2.102)

β = 1 corresponds to the quantum diffusion model, β = 2 to the naive parton model.

Figure 2.15 illustrates the predicted difference of the CT effect on the pion-nucleon and

nucleon-nucleon effective interaction. Reflecting its mesonic nature, the pion has a longer

formation length and during its formation its interaction cross section with the residual

nucleons is more strongly reduced than for a nucleon.
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Figure 2.15 Comparison of the CT effect on the total effective cross section σeff
iN for nucleon-nucleon

(left panel) and pion-nucleon (right panel) interactions. We consider the situations whereby the
ejectile possesses a lab momentum from 1 to 4 GeV/c. For the hard-scale parameter we adopt
H = 1.8 (GeV/c)2.

Another recipe for the effective cross section σeff
NN , proposed by Jennings and Miller

[114, 115], is based on a hadronic basis and computes the relevant matrix elements of

σ(b2) in a harmonic oscillator basis. The PLC is considered as a superposition of the nu-

cleon ground state and a resonance, and the effective cross section is given by

σeff
NN(Z ) = σ

tot
NN(1− e−iZ/τ) , (2.103)

with τ determined with Eq. (2.101), and ∆M taken from the mass difference with the

lowest radial excitation of the ground state in the harmonic oscillator basis. This model

was later extended with a sum-rule approach to expand the PLC in a complete set of inter-

mediate states [116, 117]. It uses measured matrix elements for deep-inelastic scattering

and diffractive dissociation to represent the hard and soft scattering operator needed in the

evaluation of σeff
NN , respectively. In this approach, the effective cross section becomes

σeff
NN(Z ) =

∫ ∞

(mN+mπ)2
dM2

Xρ(M
2
X ,Q2)

�

1− e−i(M2
X−m2

N )Z/2p
�

, (2.104)

with ρ representing the product of the above-mentioned measured matrix elements. For

small values of Z , Eq. (2.104) is approximately linear in Z .

For electroproduction of vector mesons on nuclei, work has been done in a model based

on a light-cone QCD Green’s function formalism [118–120] and calculations have been

done for φ and ρ production [121–124].
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For the calculations reported in this thesis, we have adopted the quantum diffusion

model of Farrar et al.

2.4 Short-Range Correlations

We now proceed with introducing a method that allows us to implement the effect of SRC

in the relativistic Glauber calculations. The proposed method adopts the thickness approx-

imation as a starting point. In the thickness approximation, the density
�

�φαi
(~ri)
�

�

2
of the

individual nucleons in Eq. (2.12) is replaced by an averaged density ρ[1]A (~r) defined as

ρ
[1]
A (~r) = A

∫

d~r2 . . .

∫

d~rA

�

Ψg.s.
A (~r,~r2, . . . ,~rA)

�†
Ψg.s.

A (~r,~r2, . . . ,~rA) . (2.105)

In terms of ρ[1]A (~r) the FSI factor of Eq. (2.12) can be approximated by

F thick
FSI (~r) =

1

AA−1

∫

d~r2 . . .

∫

d~rAρ
[1]
A (~r2)ρ

[1]
A (~r3) . . .ρ[1]A (~rA)

ŜπN(~r;~r2, . . . ,~rA)ŜN ′N(~r;~r2, . . . ,~rA) (2.106)

In combination with the operators of Eq. (2.91) the expression can be further simplified to

F thick
FSI (~r) =

 

∫

d~r2

ρ
[1]
A (~r2)

A

�

1−ΓN ′p(~bN ′ −~bN ′2)θ(zN ′2− zN ′)
�

�

1−Γπp(~bπ−~bπ2)θ(zπ2− zπ)
��Z− τz+1

2

×

 

∫

d~r3

ρ
[1]
A (~r3)

A

�

1−ΓN ′n(~bN ′ −~bN ′3)θ(zN ′3− zN ′)
�

�

1−Γπn(~bπ−~bπ3)θ(zπ3− zπ)
��N+ τz−1

2 , (2.107)

where τz is the isospin (1 for protons and −1 for neutrons) of the nucleon on which the

initial absorption took place. The zN ′ (zπ) axis lies along the ejected nucleon (pion). The

above expression is derived within the context of the IPM. It is clear that the nucleus has

a fluid nature and that the IPM can only be considered as a first-order approximation. In

computing the FSI effects by means of the Eq. (2.107) one fails to give proper attention to

one important piece of information: namely that one considers the density distribution of

nucleons given that there is one present at the photo-interaction point ~r.

The two-body density ρ[2]A (~r1,~r2) is related to the probability to find a nucleon at po-

sition ~r2 given that there is one at a position ~r1. We adopt the following normalization
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convention for ρ[2]A
∫

d~r1

∫

d~r2ρ
[2]
A (~r1,~r2) = A(A− 1) . (2.108)

If one ignores correlations between the nucleons,

�

ρ
[2]
A (~r1,~r2)

�

uncorr.
≡

A− 1

A
ρ
[1]
A (~r1)ρ

[1]
A (~r2) . (2.109)

The nucleus has a granular structure as the nucleons have a finite size. This gives rise to

strong nucleon-nucleon repulsions at short internucleon distances that reflect themselves

in SRC at the nuclear scale. One can correct
�

ρ
[2]
A (~r1,~r2)

�

uncorr.
for the presence of the SRC

by adopting the following functional form [125]

ρ
[2]
A (~r1,~r2)≡ γ(~r1)

�

ρ
[2]
A (~r1,~r2)

�

uncorr.
γ(~r2)g(r12) =
A− 1

A
γ(~r1)ρ

[1]
A (~r1)ρ

[1]
A (~r2)γ(~r2)g(r12) , (2.110)

with g(r12) the so-called Jastrow correlation function and γ(~r) a function that imposes the

normalization condition of Eq. (2.108) on ρ[2]A (~r1,~r2). The function γ(~r) is a solution to

the following integral equation

γ(~r1)

∫

d~r2ρ
[1]
A (~r2)g(r12)γ(~r2) = A , (2.111)

which can be solved numerically. The Glauber phase factor of Eq. (2.107) can now be

corrected for SRC through the following substitution

ρ
[1]
A (~r2)→

A

A− 1

ρ
[2]
A (~r2,~r)

ρ
[1]
A (~r)

= γ(~r2)ρ
[1]
A (~r2)γ(~r)g(|~r2−~r|)≡ ρeff

A (~r2,~r) , (2.112)

whereby ρ[2]A (~r2,~r) adopts the expression (2.110). These manipulations amount to the

following final expression for the Glauber FSI factor including SRC:

F SRC
FSI (~r) =

�
∫

d~r2

γ(~r2)ρ
[1]
A (~r2)γ(~r)g(|~r2−~r|)

A

×
�

1−ΓN ′p(~bN ′ −~bN ′2)θ(zN ′2− zN ′)
��

1−Γπp(~bπ−~bπ2)θ(zπ2− zπ)
�

�Z− τz+1
2

×
�
∫

d~r3

γ(~r3)ρ
[1]
A (~r3)γ(~r)g(|~r3−~r|)

A

�

1−ΓN ′n(~bN ′ −~bN ′3)θ(zN ′3− zN ′)
�

×
�

1−Γπn(~bπ−~bπ3)θ(zπ3− zπ)
�

�N+ τz−1
2

. (2.113)
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The effective density of Eq. (2.112) accounts for the fact that the motion of each nucleon

does depend on the presence of the other ones. In fig. 2.16 we display the effective nuclear

density as it would be observed by a nucleon or a pion created after photoabsorption on a

nucleon at the center of the nucleus. The figure shows the density for Fe as computed in

the IPM [ρ[1]A (x , y, z ≡ 0)] and with the expression based on the substitution of Eq. (2.112)

γ(x , y, z ≡ 0)ρ[1]A (x , y, z ≡ 0)γ(x ≡ 0, y ≡ 0, z ≡ 0)g(|~r|) .

In Fig. 2.16 and all forthcoming numerical calculations we use a correlation function g(|~r|)
from Ref. [95]. It is characterized by a (Gaussian) hard core of about 0.8 fm and a second

bump that extends to internucleon distances r of about 2 fm and reaches its maximum for

r12 ≈ 1.3 fm. This correlation function provided a fair description of the SRC contributions

to 12C(e, e′pp) [126] and 16O(e, e′pp) [87] (Fig. 2.5). It is clear that the SRC lead to a

local reduction - with size of the nucleon radius - of the density around the nucleon struck

by the (virtual) photon. To preserve the proper normalization, this reduction amounts to

some enhanced density at distances of about twice the nucleon radius. With regard to the

intranuclear attenuation, the reduction of the density in the proximity of the struck nucleon

will result in some enhanced transparency close to the photointeraction point ~r. The en-

hanced density at positions of about twice the nucleon radius from the struck nucleon, can

be expected to have the opposite effect.

At the moment the model does not include tensor correlations, believed to be the main

source of the difference in abundance of observed p− p and n− p pairs. If we take a look at

the values of the slope parameter βiN , we observe that a typical value of βiN for a particle

in the GeV momentum range is smaller than 0.5 fm. As this parameter provides a measure

of the transverse range of the attenuation by the nuclear medium, we anticipate the effects

of including tensor correlations (who operate at larger distances) in the Glauber model will

be a lot smaller than those caused by SRC.
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Figure 2.16 The effective nuclear density ρeff
A (~r2,~r) at z2 = 0 for He (left) and Fe (right) before

(upper) and after (lower panel) the inclusion of SRC effects. The effective nuclear densities here
refer to the situation whereby the (virtual) photon is absorbed at the origin (x = 0, y = 0, z = 0).



Chapter 3
Numerical Results

This chapter presents the results of the numerical calculations using the model outlined in

chapter 2. We start with an analysis of the FSI factor of a reaction with two ejected par-

ticles and show the effects of the attenuation mechanisms on the momentum distributions

for pion-nucleon and two nucleon removal reactions in several nuclei. Sec. 3.3 presents

transparency calculations for pion photo- and electroproduction and two nucleon knockout

reactions. The influence of adding short-range correlations and color transparency to the

transparency calculations is investigated and the hard-scale dependence of the two effects

is determined. For the pion removal reaction, comparisons are made with data taken at

Jefferson Lab and other models, both semiclassical and quantummechanical. We also take

a closer look at the A-dependence of the pion electroproduction reaction. Subsequently,

transparency calculations for the A(γ, pp) reaction gives us an opportunity to compare the

competing reaction mechanisms outlined in sec. 2.1.3. We conclude the chapter by compar-

ing the density dependences of removal reactions involving one, two and three nucleons.

3.1 The FSI factor

In this subsection we present a selected number of results of the numerical calculations of

the RMSGA FSI factor of Eq. (2.12). We consider the 12C(γ, pπ−) reaction in a reference

frame with the z axis along the momentum ~pN of the ejected nucleon and the y axis along

~pπ×~pN (with ~pπ in the lower hemisphere). In what follows, θNπ stands for the angle of the

pion relative to the nucleon. It has a negative value in all calculations considered in this

section. The coordinate ~r denotes the interaction point with the external photon. A sketch

of this situation is presented in Fig. 3.1. We present the FSI factor versus the spherical

coordinates in this frame. The general conclusions and the trends of this discussion can be

straightforwardly generalized to the situation of two hadrons in the final state (either two
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nucleons, two pions or a nucleon and a pion).

Figure 3.1 Sketch of the coordinates, choice of axes and θNπ for the presentation of the 12C(γ, pπ−)
FSI factor. r denotes the distance of the interaction point to the center of the nucleus and theta the
angle with the z axis, taken parallel to the momentum of the ejected nucleon.

In fig. 3.2, we present the calculated norm and phase of the FSI factor in the scattering

plane (φ = 0) for pN ≈ 2.6 GeV and pπ ≈ 2.3 GeV, which are conditions for which Jefferson

Lab collected data [47]. We present the FSI factor for the proton and the pion separately

as well as the combined effect when the two are detected in coincidence.

When looking at the θ dependence, it becomes clear from Fig. 3.2 that the norm is

smallest in the direction opposite the momentum of the particle (being 180◦ for the nucleon

and 180◦+θNπ for the pion). For these directions and large r, the nucleon or pion is created

close to the surface of the nucleus on the opposite side of its asymptotic direction and has

to travel through a thick layer of nuclear medium before it reaches the detectors. As for the

r dependence, we see for the nucleon a reduction of the FSI effects for rising r at angles in

the neighborhood of θ = 0◦, and respectively an increment for rising r at θ = 180◦. This

is again due to the fact that the outgoing nucleon traverses less, respectively more nuclear

matter on its way out of the nucleus. The same observations apply for the pion, albeit at

the angles θNπ and 180◦+ θNπ. The total FSI factor combines the intranuclear attenuation

effects on the nucleon and pion. Hence, the norm shows the largest reduction at θ around

180◦ and 180◦+θNπ. The phase of the FSI factor exhibits similar behavior, with the largest

phase shifts occurring at the discussed angles.

Figure 3.3 teaches us a couple things about the φ dependence of the FSI factor. As
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Figure 3.2 Radial and polar-angle dependence of the norm (left) and phase (right) of the FSI factor
FFSI in the scattering plane (φ = 0◦) for the 12C(γ, pπ−) reaction from the 1s1/2 level. For the
upper (middle) panels, solely the FSI effects on the ejected proton (pion) are considered. The lower
panels include the net effect of both the pion and nucleon FSI effect. The results are obtained for
pN = 2638 MeV, pπ = 2291 MeV, θNπ =−65.19◦.
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Figure 3.3 Polar- and azimuthal-angle dependence of the norm of the FSI factor FFSI at a distance
r = 3 fm from the center of the nucleus for the 12C(γ, pπ−) reaction from the 1s1/2 level. Separate
contributions from the nucleon (upper panel) and the pion (middle panel), as well as their combined
effect (bottom panel), are shown. Kinematics as in Fig. 3.2.
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the outgoing nucleon lies along the z axis there is no dependence on the azimuthal angle

because of the cylindrical symmetry. Again, we can see that the absorption is largest when

large amounts of nuclear matter need to be traversed (i.e., large θ). Looking at the pion

we see the largest attenuation occurs in the upper hemisphere (cosφ ≥ 0) as a pion that is

created in this region has to traverse the inner core of the nucleus. The combined effect of

the pion and nucleon contributions is contained in the bottom panel. As the reaction takes

place in the xz plane, the total FSI factor retains the following symmetry: FFSI(r,θ ,φ) =

FFSI(r,θ , 2π−φ).
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Figure 3.4 Momentum distributions for neutron knockout from the 1s1/2 (left), 1p3/2 (middle)
and 1p1/2 shell (right panel) in the 16O(γ, pπ−) reaction with an incident photon energy of 3 GeV
and the pion c.m. angle θπc.m. = 90◦. Black curves are RPWIA calculations, blue includes Glauber
FSI and green curves include CT effects to the Glauber FSI.

3.2 Momentum Distributions

The attenuation mechanisms of the nuclear medium reflect themselves in distortions of the

momentum distributions which translates to the inclusion of the FSI factor in Eq. (2.29).
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In Fig. 3.4, we have plotted the momentum distributions with and without FSI and CT for

the 16O(γ, pπ−) reaction with an incident photon energy of 3 GeV and the pion c.m. angle

θπc.m. = 90◦. The strength of the distorted momentum distribution without CT is reduced by

the largest amount in the respective maxima of the distributions and evaluates to 25 % for

the 1s1/2, 32 % for the 1p3/2, and 40 % for the 1p1/2 shell. The shell dependence of the

transparency is caused by the differences in density distribution for the different shells. The

density distribution of the 1s1/2 shell is largest in the center of the nucleus. Hence nucleons

knocked out from this shell will on average have to transverse more nuclear matter than

their counterparts in the 1p3/2 and 1p1/2 shells. The FSI also shift the minimum at p = 0

for the p-shells to higher values in the distorted momentum distributions.
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Figure 3.5 Momentum distributions for double proton knockout from the (1s1/2− 1s1/2)- (left),
(1s1/2−1p3/2)- (middle) and (1p3/2−1p3/2)-orbits (right panel) in the 12C(γ, pp) reaction with
an incident photon energy of 3 GeV and coplanar symmetric kinematics (situation shown in Fig.
3.7). Black curves are RPWIA calculations, green includes Glauber FSI and blue curves include CT
effects to the Glauber FSI.

We can also formulate a momentum distribution related to Eq. (2.29) for the nucleon-
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Figure 3.6 Momentum distributions for double proton knockout from a selection of shell combina-
tions in the 56Fe(γ, pp) reaction with an incident photon energy of 4 GeV and coplanar symmetric
kinematics for the outgoing protons. Black curves are RPWIA calculations, green includes Glauber
FSI and blue curves include CT effects to the Glauber FSI.
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Figure 3.7 The A(γ, N1N2) reaction in coplanar and symmetric kinematics. The two escaping nu-
cleons N1 and N2 have the same energy and polar angle θNq, but escape from the opposite side of
~q.

nucleon pair in a relative S-state of sec. 2.1.3:

ρD
n1κ1n2κ2

(~P,~p) =
1

(2π)6
∑

s1,s2,m1,m2

�

�

�

�

∫

d~Re−i~P·~R

∫

d~re−i~p·~r g(~r)

×ū(
~P

2
+ ~p, s1)φn1κ1m1

(~R)ū(
~P

2
− ~p, s2)φn2κ2m2

(~R)FFSI(~R)

�

�

�

�

�

2

, (3.1)

with notations as in sec. 2.1.3. FFSI(~R) is the FSI factor of Eqs. (2.54) and (2.55), and

(niκimi) denote the quantum numbers of the ejected nucleons. By neglecting the lower

components of the positive-energy projections in Eq. (3.1), we can separate ρD
n1κ1n2κ2

(~P,~p)

in a part containing the relative pair momentum and a part containing the c.m. motion.

With the notations of Eqs. (2.58) and (2.59):

ρD
n1κ1n2κ2

(~P,~p)≈ g(~p)
1

(2π)6
∑

s1,s2,m1,m2

�

�

�ηD
n1κ1m1n2κ2m2

(~P)
�

�

�

2
≡ g(~p)ρD

n1κ1n2κ2
(~P) (3.2)

Fig. 3.5 shows the c.m. momentum distribution ρD
n1κ1n2κ2

(~P) for all possible shell com-

binations in the 12C(γ, pp) reaction for a photon energy of 4 GeV and coplanar symmetric

kinematics. The strength is reduced at the distribution maxima to 15% for the (1s1/2−
1s1/2)-orbits, 21% for the (1s1/2−1p3/2)-orbits, and 26% for the (1p3/2−1p3/2)-orbits.

Fig. 3.6 also depicts momentum distributions for a selection of shell combinations in the
56Fe(γ, pp) reaction highlighting the big reduction of the distributions in a large nucleus.
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3.3 Transparencies

3.3.1 Pion Photoproduction

The experiment E94-104 at Jefferson Lab extracted nuclear transparencies for the pro-

cess γ + 4He → p + π− + 3He. The measurements were performed for photon energies

1.6 ≤ q ≤ 4.2 GeV and for θπc.m. = 70◦ and 90◦, with θπc.m. the center-of-mass angle between

the photon and pion. In total, the nuclear transparencies were measured for eight kine-

matical settings. In a proposal for a follow-up experiment, seven additional kinematics are

suggested for measurements at higher photon energies and θπc.m. = 90◦ [127]. We have

performed calculations for the completed and planned experiments. Table 3.1 provides a

list of the kinematics.

q [MeV] θπc.m. [deg] pN [MeV] θN [deg] pπ [MeV] θπ [deg]
1648 70◦ 989 47.39◦ 1238 −36.02◦

1648 90◦ 1277 37.37◦ 1015 −47.73◦

2486 70◦ 1322 44.37◦ 1794 −31.02◦

2486 90◦ 1740 34.45◦ 1438 −43.18◦

3324 70◦ 1642 41.74◦ 2363 −27.56◦

3324 90◦ 2195 32.01◦ 1866 −38.57◦

4157 70◦ 1949 39.51◦ 2929 −25.05◦

4157 90◦ 2638 30.01◦ 2291 −35.18◦

4327 70◦ 2011 39.1◦ 3044 −24.6◦

4327 90◦ 2727 29.6◦ 2377 −34.6◦

5160 70◦ 2307 37.3◦ 3606 −22.8◦

5160 90◦ 3161 28.0◦ 2797 −32.1◦

6059 70◦ 2622 35.6◦ 4211 −21.2◦

6059 90◦ 3625 26.6◦ 3250 −29.9◦

7025 70◦ 2956 33.9◦ 4861 −19.8◦

7025 90◦ 4120 25.2◦ 3735 −28.0◦

8057 70◦ 3309 32.4◦ 5555 −18.6◦

8057 90◦ 4646 24.0◦ 4253 −26.3◦

9156 70◦ 3683 31.0◦ 6294 −17.6◦

9156 90◦ 5204 22.8◦ 4805 −24.8◦

10322 70◦ 4077 29.7◦ 7077 −16.6◦

10322 90◦ 5794 21.8◦ 5389 −23.5◦

Table 3.1 Kinematics used in the completed and planned pion photoproduction transparency ex-
periments. Central values for the photon energy (MeV), proton momentum pN (MeV), proton angle
θN , pion momentum pπ (MeV) and pion angle θπ for θπc.m. = 70◦, 90◦. Angles are measured relative
to the incoming photon momentum.

We aim at performing calculations that match the kinematic conditions of the experi-
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ment as closely as possible. We use the following definition for the transparency:

T =

∑

α

∫

dqY (q)
∫

d~pm

�

d5σ

dEπdΩπdΩN

�

RMSGA
∑

α

∫

dqY (q)
∫

d~pm

�

d5σ

dEπdΩπdΩN

�

RPWIA

. (3.3)

The integrations
∫

dq
∫

d~pm in Eq. (3.3) were evaluated with a Monte-Carlo integration

algorithm. To this end, random events within the photon beam energy range, detector

acceptances and applied cuts for each data point were generated for the calculation of the

transparency until convergence of the order of 5% was reached. Typically, this involves

about 1000 events for each data point. In Eq. (3.3),
∑

α extends over all occupied single-

particle states in the target nucleus. All cross sections are computed in the laboratory

frame. Y (q) provides the weight factor for the generated events. It includes the yield

of the reconstructed experimental photon beam spectrum [47] for the photon energy of

the generated event. We assume that the elementary γ+ n → π− + p cross section dσγπ

d|t|

in Eqs. (2.28) and (2.30) remains constant over the kinematical ranges
∫

dq
∫

d~pm that

define a particular data point. With this assumption the cross section dσγπ

d|t|
cancels out of

the ratio (3.3). For all kinematic conditions of Table 3.1, the pion and nucleon momenta

are sufficiently high for the RMSGA method to be a valid approach for describing the FSI

mechanism.

In Fig. 3.8, we present the results of transparency calculations for 4He together with the

experimental data and the predictions of the semiclassical model of Ref. [128]. The com-

puted RMSGA nuclear transparencies are systematically about 10% larger than the ones

obtained in the semiclassical model. As can be appreciated from Fig. 3.8, the RMSGA cal-

culations predict comparable CT effects as the semiclassical calculations shape. We have

to stress though that the calculations with CT are normalized to the calculations without

CT for the data point with the lowest |t| in the semiclassical model. We did not perform

this normalization for our calculations. Our results without color transparency are in bet-

ter agreement with the experimental results than those with CT effects included. This is

in disagreement with the semiclassical model whose results with CT effects are in better

agreement with the experimental data. We also have to point out that, although the calcu-

lations with CT effects overestimate the experimental results for all data points, the slope

of this curve shows better agreement with the slope of the data than the slope of the curves

without CT effects.

As can be seen in Fig. 3.8, our model predicts a rise in the transparency for |t| ≤
1.2 GeV2. In Fig. 3.9 the separated transparencies of the outgoing proton and pion are

displayed next to the full result for the kinematics that data were taken for. It is clear from

this figure that at low |t| the fall of the transparency with rising |t| can be attributed to
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Figure 3.8 The nuclear transparency extracted from 4He(γ, pπ−) versus the squared momentum
transfer |t| at θπc.m. = 70◦ (upper panel) and θπc.m. = 90◦ (lower panel). The black and green curves
are RMSGA and RMSGA+CT calculations respectively. The blue and red line are RMSGA+SRC and
RMSGA+SRC+CT results. Table 3.1 lists the kinematics of the calculated points. The semiclassical
model [128] results are presented by the shaded areas: the hatched (dotted) area is a calculation
without (with) CT. Data from [47].
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the proton contribution. This phenomenon can be attributed to the behavior of the proton-

proton and (to a lesser extent) proton-neutron cross section for proton momenta of about 1

GeV. As can be appreciated from Fig. 3.10, a drop from ∼ 40 mb to about 20-30 mb occurs

as one approaches 1 GeV from higher momenta.
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Figure 3.9 Contributions of the pion (dashed-dotted) and nucleon (dashed) to the total nuclear
transparency (full) extracted from 4He(γ, pπ−) versus |t| at θπc.m. = 70◦. All calculations include CT.

Figure 3.9 also shows that the 4He nucleus is more transparent for pion emission than

for proton emission. This can be partially attributed to the lower pion total cross sections.

As pointed out in Fig. 2.15 the larger formation length, and corresponding bigger reduction

of the effective cross section make that the CT effect is larger for pions than for protons.

In Fig. 3.11 the computed increase in the nuclear transparency caused by CT and SRC

mechanisms is shown as a function of |t|. One observes that SRC mechanisms increase the

nuclear transparency by about 5%. As there is no direct dependence on the hard-scale, the

increase is almost independent of |t|. Inclusion of CT effects tends to increase the predicted

transparency at a rate which depends on a hard-scale parameter. Here, that role is played by

the momentum-transfer |t|. The CT phenomenon shows a linear rise from almost 0 to over

20% at the largest values of |t|. For |t| ≤ 2.5 GeV2 the predicted effect of SRC is larger

than the increase induced by the CT mechanism. The SRC decrease the slope in the |t|
dependence of the CT phenomenon. Indeed, the SRC induces holes in the nuclear density

in the direct neighborhood of the interaction point (see Fig. 2.16) where the CT effects are

largest. At high |t| the short-range correlations have a modest impact on the magnitude of

the CT effects. Our investigations show that by studying the hard-scale dependence of the

transparency the CT-related mechanisms can be clearly separated from the SRC ones.

In the search of phenomena like CT in transparency studies, it is of the utmost impor-
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Figure 3.10 Total and elastic cross sections for proton-proton (upper) proton-neutron (lower panel)
scattering as a function of proton lab momentum. Data are from Ref. [105]. Solid and dashed curves
show global fits used in our calculations from Ref. [73]. The pink box indicates the momenta of the
ejected nucleon covered in our calculations.

tance to have robust and advanced calculations based on concepts from traditional nuclear

physics. Thereby, one of the major sources of uncertainty stem from the description of

FSI mechanisms. In our eikonal model, we can either use optical potentials (ROMEA) or

a Glauber framework (RMSGA). In kinematic regions of moderate hadron momenta both

approaches can be used [74]. As they adopt very different underlying assumptions, we

consider a comparison between the predictions of the two approaches as a profound test of

the trustworthiness of either approach. We computed the transparency of the 4He(γ, pπ−)

reaction for kinematics at θπc.m. = 70◦ and 90◦ with ejected proton momenta ranging from

500 MeV/c to 1 GeV/c, listed in Table 3.2. As can be appreciated from Fig. 3.12, both

descriptions yield a similar shape, but the RMSGA calculations are consistently larger by

about 5%. At higher nucleon momenta, however, the difference between the predictions

for the transparencies in the two approaches shrinks to a few percent. The estimated model

dependence in the computed transparencies is of the same order as the predicted role of
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Figure 3.11 The |t| dependence of the relative increase of the nuclear transparency due to SRC
and CT effects. We consider the 4He(γ, pπ−) reaction at θπc.m. = 70◦ (left panel) and 90◦ (right
panel) and kinematic conditions from Table 3.1. The baseline result is the RMSGA calculation. The
solid (dashed) curve includes the effect of CT (SRC). The dot-dashed line is the combined effect of
CT+SRC.
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Figure 3.12 Comparison between the RMSGA (squares) and ROMEA (circles) description of the
nucleon transparency of the 4He(γ, pπ−) reaction for kinematics at θπc.m. = 70◦ (left panel) and 90◦

(right panel). Neither CT nor SRC effects were included in the calculations.

SRC mechanisms. From these observations, it is clear that pion and nuclear transparencies

are not the optimum observables to study SRC mechanisms in nuclei. Indeed they bring

about a relatively modest overall renormalization of about 5 %. Unlike the CT effects for

example, their role does not grow with an increasing hard-scale, nor is there any sizable

A-dependence in the SRC effects.

3.3.2 Pion Electroproduction

The E01-107 collaboration at Jefferson Lab measured the nuclear transparency for the pion

electroproduction process on H, 12C, 27Al, 64Cu and 197Au. Measurements were done for the

kinematics listed in Table 3.3. The virtual photon can fluctuate into a qq̄-pair along a certain
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q [MeV] θπc.m. [deg] pN [MeV] θN [deg] pπ [MeV] θπ [deg]
600 90◦ 573 41.61◦ 417 −65.74◦

650 70◦ 489 51.20◦ 513 −47.91◦

650 90◦ 611 41.50◦ 448 −64.64◦

750 70◦ 546 51.01◦ 588 −46.23◦

750 90◦ 686 41.20◦ 509 −62.59◦

850 70◦ 601 50.72◦ 661 −44.70◦

850 90◦ 757 40.83◦ 567 −60.72◦

950 70◦ 653 50.37◦ 733 −43.31◦

950 90◦ 825 40.43◦ 625 −58.99◦

1069 70◦ 713 49.92◦ 818 −41.81◦

1069 90◦ 905 39.90◦ 691 −57.11◦

1250 70◦ 800 49.18◦ 946 −39.80◦

1450 70◦ 892 48.36◦ 1086 −37.87◦

1648 70◦ 989 47.39◦ 1238 −36.02◦

Table 3.2 Central values for the photon energy (MeV), proton momentum pN (MeV), proton angle
θN , pion momentum pπ (MeV) and pion angle θπ for θπc.m. = 70◦, 90◦, used in the low energy
comparison between the RMSGA and ROMEA models. Angles are measured relative to the incoming
photon momentum.

distance (its coherence length), and introduce initial-state interactions in this manner. It is

important to minimize the influence of these competing energy-dependent reaction mech-

anisms on the transparency. In the kinematics of the experiment under consideration, the

coherence length is of the order 0.2− 0.5 fm, and smaller than the radius of a nucleus. In

all the measurements the pion is detected in a relatively narrow cone about the momentum

transfer. We have performed calculations for all target nuclei. The transparency is defined

as

T =

∑

α

∫

dωY (ω)
∫

∆3pm
d~pm

�

d8σ

dΩe′dEe′dEπdΩπdΩN

�

RMSGA
∑

α

∫

dωY (ω)
∫

∆3pm
d~pm

�

d8σ

dΩe′dEe′dEπdΩπdΩN

�

RPWIA

. (3.4)

The integration over ω takes into account the spread in energy of the virtual photon

in the experiment and weighs each point with the reconstructed yield Y (ω) [129]. The

quantity ∆3pm specifies the phase space of the missing momentum and is determined by

the condition |pm| ≤ 300 MeV/c, the experimental cuts and detector acceptances. An

experimental cut of 100 MeV was placed on the missing mass of the final state. Accordingly,

the undetected final neutron is an extremely slow one. The experimental transparency is

obtained by dividing the measured yield by a Monte-Carlo equivalent yield for the targets

with nucleon number A and subsequently comparing it to the ratio of the yields for the 1H

target [50]:
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Q2 [GeV2] Ee [MeV] θe [deg] Ee′ [MeV] pπ [MeV] θπ [deg]
1.10 4021 27.76◦ 1190 2793 10.58◦

2.15 5012 28.85◦ 1730 3187 13.44◦

3.00 5012 37.77◦ 1430 3418 12.74◦

3.91 5767 40.38◦ 1423 4077 11.53◦

4.69 5767 52.67◦ 1034 4412 9.09◦

Table 3.3 Kinematics used in the experiment measuring the pion electroproduction transparency.
Central values of Q2 (GeV2), incoming electron energy Ee(MeV), electron scattering angle θe (de-
grees), scattered electron energy Ee′ (MeV), ejected pion momentum pπ (MeV), and ejected pion
angle (degrees) for the kinematics of the Jefferson Laboratory experiment E01-107. Angles are
measured relative to the incoming electron beam.

T =
�

Ȳmeasured/ȲMC

�

A/
�

Ȳmeasured/ȲMC

�

H (3.5)

As the Monte-Carlo simulation does not include the attenuation mechanisms on the de-

tected pions, the measured transparency is a measure of these. We compute these intranu-

clear attenuation effects on the ejected pions in the RMSGA model. Thereby, we use a

parametrization provided by the E01-107 collaboration for the free electroproduction in

Eq. (2.46) [129, 130]. Details for this parametrization are provided in App. E.

Figure 3.13 presents the results from our transparency calculations for the electropro-

duction reaction together with the experimental data [50] and results from the semiclas-

sical model of Ref. [131]. The RMSGA calculations display a modest increase over the

Q2 range. This behavior finds a simple explanation in the pπ dependence of the σtot
π+p of

Fig. 2.11. The results contained in Fig. 3.13 cover a range in pion momenta given by

2.8 ≤ pπ ≤ 4.4 GeV. In this range, σtot
π+p displays a soft decrease, which reflects itself in a

soft increase of the nuclear transparency. The RMSGA+SRC transparencies are again about

5% larger than the RMSGA ones. The RMSGA+CT shows a strong Q2 dependence with

CT-related enhancements up to 20% at the highest energies. These calculations including

CT are in very good agreement with the experimental data. The results overestimate the

Au data somewhat, but the slope is in agreement with the data. If we compare the results

to the semiclassical calculations, we see that the slopes of both calculations are in excellent

agreement, reflecting the use of the same quantum diffusion parametrization for the CT ef-

fect. The absolute value differs, however, with the semiclassical results somewhat larger for

the 12C calculations, and evolving to smaller for the 197Au calculations. A third model de-

veloped by Kaskulov et al. [132] also finds excellent agreement between their calculations

including CT and the data. It includes a model for the primary p(e, e′π+)n reaction and
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Figure 3.13 The Q2 dependence of the nuclear transparency for the A(e, e′π+) process in 12C,
27Al, 63Cu and 197Au. The full black and green curves are RMSGA and RMSGA+CT calculations
respectively. The blue and red line are RMSGA+SRC and RMSGA+SRC+CT results. The dashed
curves are the results of the semiclassical model by Larson, Miller and Strikman [131] with (green)
and without (black) CT. Data from Ref. [50].
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offers different descriptions for the longitudinal and transverse parts of the cross section.

The longitudinal part is described by a soft hadron exchange using Regge exchange trajec-

tories, the transverse part combines the soft hadron exchange with a model describing the

pion production as a hard partonic process. The FSI are modelled using the GiBUU model

[133]. Color transparency is implemented with the quantum diffusion model outlined in

sec. 2.3 with two different parametrizations. One with a formation time determined by the

Lund model [134, 135], and one with the formation time as in sec. 2.3 with∆M2 = 1 GeV2

for the pion. The calculations for the second parametrization are shown in Fig. 3.14.
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Figure 3.14 The Q2 dependence of the nuclear transparency for the A(e, e′π+) process in 12C, 27Al,
63Cu and 197Au. The black dash-dash dotted curves realize the CT effect in both the transverse and
longitudinal part. The blue dash-dotted (red dot-dot-dashed) curves only include the CT effect in
the transverse (longitudinal) channel. Data from Ref. [50]. Figure taken from Ref. [132].

The evolution of the A dependence of the transparency is shown in Fig. 3.15. One ob-

serves that the addition of CT to the calculation adds more curvature and that this increases

with higher Q2. In Fig. 3.16 a fit of the A-dependence to the parametrization T = Aα−1 is

shown as a function of Q2. Fits to the pion-nucleus scattering cross section have resulted in

α = 0.76± 0.01 [136]. Signatures of CT mechanisms can be extracted from an emerging
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Figure 3.15 A dependence of the transparency for the A(e, e′π+) process at Q2 = 1.1 GeV2 (black)
and Q2 = 4.69GeV2 (red). The solid curves denote RMSGA+SRC results. The dashed lines are
RMSGA+CT+SRC calculations.

Q2 (or hard-scale) dependence of the extracted α’s. As one can see, the fits to the data

deviate significantly from the established value and are in nice agreement with both model

calculations including CT, though the RMSGA+CT+SRC results consistently overestimate

the data by a few percentages. Finally, in Fig. 3.17, we compare our model calculations for
12C with those from the semiclassical model of Ref. [131]. The transparency is plotted as

function of the z component of ~k = ~pπ−~q. As previously observed for the photoproduction

results (Fig. 3.12) and the electroproduction results (Fig. 3.13), our results again turn out

to be higher by a few percentages.

Q2 [GeV2] Ee [MeV] θe [deg] Ee′ [MeV] pπ [MeV] θπ [deg] kz [GeV]
1.00 3540 29.00◦ 1126 2380 12.06◦ -0.23
1.83 3540 53.46◦ 639 2823 9.23◦ -0.39
2.15 5012 28.85◦ 1730 3187 13.44◦ -0.46
3.00 4700 42.40◦ 1220 3315 12.20◦ -0.58
3.00 5012 37.77◦ 1430 3418 12.74◦ -0.62
4.00 5860 36.56◦ 1734 3897 13.02◦ -0.71
5.00 5860 53.90◦ 1038 4540 9.08◦ -0.79

Table 3.4 Kinematics used in the comparison between the RMSGA and semiclassical models for
the A(e, e′π+) reaction. Central values of Q2 (GeV2), incoming electron energy Ee(MeV), electron
scattering angle θe (degrees), scattered electron energy Ee′ (MeV), ejected pion momentum pπ
(MeV), ejected pion angle (degrees), and z component of ~k = ~pπ −~q. Angles are measured relative
to the incoming electron beam.
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Figure 3.16 The α parameter in the parametrization of the A-dependence of the transparency T =
Aα−1 is shown as a function of Q2. Inner error bars of the data show the statistic uncertainty, and the
outer error bars are the quadrature sum of the statistical, systematic and model uncertainties [50].
The hatched band is the value of α extracted from pion-nucleus scattering data [136]. Red curves
show fits to the calculations of Ref. [131] with (dashed) and without (solid) CT. The blue curve is a
fit to the RMSGA+SRC+CT calculations. Figure taken from Ref. [50].

3.3.3 Two Nucleon Knockout

The Hall A experiment E03-101 [48, 49] at Jefferson Lab has measured the transparency

for the 3He(γ, pp) and 12C(γ, pp) reactions, and data analysis is currently under way [137].

Data are collected for proton c.m. angles θc.m. = 90◦ in coplanar and symmetric kinematics

(Fig. 3.7). Table 3.5 lists the central values of the photon and nucleon momenta. Trans-

parency is defined along the lines of Eqs. (3.3) and (3.4) as

T =

∑

α1α2

∫

dqY (q)
∫

d~Pm

�

d5σ

dEk1
dΩN1

dΩN2

�

RMSGA
∑

α1α2

∫

dqY (q)
∫

d~pm

�

d5σ

dEk1
dΩN1

dΩN2

�

RPWIA

, (3.6)

where
∑

α1α2
involves a sum over all possible shell combinations. The integrations

∫

dq
∫

d~Pm

are evaluated with a Monte-Carlo integration algorithm that takes into account experimen-

tal cuts and acceptances, and Y (q) represents the weight of each generated event through

the estimated reconstructed experimental photon beam spectrum [137]. The transparency

is computed for knockout of a correlated pair in a relative S-state. Thereby we adopt a

factorized approach, factorizing the matrix element of Eq. (2.47) into the momentum dis-

tribution of Eq. (3.1) and a part containing the primary (γ, pp) reaction. The latter part is
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Figure 3.17 Nuclear transparency results for 12C(e, e′π+) versus the z component of ~k = ~pπ − ~q
for kinematics corresponding to data points of the JLab experiment of Ref. [50]. The circles are
RMSGA+CT predictions, whereas the stars are from the semiclassical calculations of Ref. [131].
Kinematics are listed in Table 3.4

again assumed to cancel out of the ration of Eq. (3.6).

Fig. 3.18 shows the results of the transparency calculations as a function of momentum

transfer squared |t| = (qµ − pµN1
) for the (γ, pp) reaction in 3He and 12C as the knockout

of a correlated pair. As for the pion photoproduction channel, the transparencies again

rise for |t| ≤ 2 (GeV/c2). This phenomenon finds its origin in the local minimum of the

total nucleon-nucleon cross section for momenta around 1 GeV/c. As with the previously

studied reactions, the SRC mechanisms increase the transparency by 5%. The inclusion

of CT on the other hand enhances the transparency up to over 20% for carbon at the

highest energies. The most striking feature of these calculations, however, is the low values

of the transparencies. If one takes the transparency value for the RSMGA calculations of

the 12C(e, e′p) reaction at these energies (T ≈ 0.6 [74]) and naively squares this value to

estimate the FSI, one obtains 0.36. This is significantly higher than the value of ∼ 0.23 we

obtain for the 12C(γ, pp) transparency. As is shown in the next section, this is a consequence

of the A(γ, pp) reaction probing higher density regions of the nucleus then the A(e, e′p)

reaction. Higher densities mean more reduction, and hence a lower transparency.

Fig. 3.19 shows some results for the 3He(γ, pp) process, with the reaction described as

a hard rescattering process. To make these calculations numerical feasible, the FSI factor

of Eq. (2.66) is approximated by factorizing it into a part containing the FSI of the ejected
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Figure 3.18 The nuclear transparency extracted from 12C(γ, pp) (upper), 3He(γ, pp) (middle) and
their ratio (lower panel) versus the squared momentum transfer |t|. The black and red curves are
RMSGA and RMSGA+CT calculations respectively. The blue and green line are RMSGA+SRC and
RMSGA+SRC+CT results. Table 3.5 lists the kinematics of the calculated points. These calculations
consider 3He(γ, pp) as the breakup of a correlated pair.
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q [GeV] pN1
[MeV] θN1

[deg] pN2
[MeV] θN2

[deg]
0.849 943 65.32◦ 943 −65.32◦

1.08 1095 62.62◦ 1095 −62.62◦

1.65 1453 57.00◦ 1453 −57.00◦

2.1 1711 53.69◦ 1711 −53.69◦

2.45 1913 51.43◦ 1913 −51.43◦

3.12 2276 47.98◦ 2276 −47.98◦

4.07 2780 44.11◦ 2780 −44.11◦

Table 3.5 Kinematics of the E03-101 experiment at Jefferson Lab. The experiment aims at measur-
ing the transparency for double proton knockout reactions. Central values for the photon energy q
(GeV), proton momenta pNi

(MeV) and angles θNi
for θc.m. = 90◦. Angles are measured relative to

the incoming photon momentum.

nucleons and a part containing the FSI of the propagator:

FFSI(~r1,~r2)≈
∫

d~r3 . . .

∫

d~rA|φα3
(~r3)|2 . . . |φαA

(~rA)|2

× ŜK1N(~r2;~r3, . . . ,~rA)ŜK2N(~r2;~r3, . . . ,~rA)

×
∫

d~r ′3 . . .

∫

d~r ′A|φα3
(~r ′3)|

2 . . . |φαA
(~r ′A)|

2ŜN N(~r2,~r1;~r ′3, . . . ,~r ′A) . (3.7)

With this approximation, we can take the factor containing the FSI of the ejected particles

out of the innermost integrations, as they don’t depend on the momentum vector of the

propagator. The transparency is again calculated by using Eq. (3.6), but this time with the

matrix element of Eq. (2.71) in the five-fold differential cross section. Calculations were

done with all the FSI in Eq. (3.7) included and with the FSI of the propagator excluded.

As can be seen in Fig. (3.19), the FSI of the propagator lower the transparency by about

5%. Both rescattering calculations result in transparencies with a similar |t| dependence

as the one-step process in Fig. 3.18. The calculations including the FSI of the propagator

yield the lowest transparencies, indicating that the two-step two-nucleon knockout probes

even higher densities than the correlated pair knockout. A detailed investigation of the

A(γ, NN) transparencies requires calculations with the two competing mechanisms summed

at amplitude level. In this way, the size of the interference between the one- and two-step

processes can also be determined.

3.4 Density Dependence

Nucleon removal studies in quasi-free kinematics belong to the most powerful instruments

for studying the structure of nuclei. Since the 1960’s electroinduced single-nucleon knock-
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Figure 3.19 The nuclear transparency extracted from 3He(γ, pp) (middle) versus the squared mo-
mentum transfer |t|. The black and blue curves are RMSGA and RMSGA+CT calculations respec-
tively. Solid curves include all FSI, dashed curves do not include the FSI of the propagator. These
calculations consider 3He(γ, pp) as a hard-rescattering mechanism.

out(or, A(e, e′p)) has provided a wealth of information about the merits and the limitations

of the nuclear shell-model [138]. Quasi-free proton scattering from nuclei (i.e. A(p, 2p))

has a somewhat longer history [139] and could in principle provide similar information as

A(e, e′p). With three protons subject to attenuation effects, in A(p, 2p) the description of the

initial and final-state interactions, is a more challenging issue than in A(e, e′p). More recent

applications of the A(p, 2p) reaction involve the analyzing power (Ay) as an instrument for

probing possible medium modifications of hadron properties and the density dependence

of the nucleon-nucleon interaction [82, 140]. In inverse kinematics (i.e. the p(A, 2p)A− 1

reaction) the (p, 2p) process offers great opportunities for systematic studies of the density

and isospin dependency of single-particle properties in unstable nuclei [141] at high-energy

radioactive beam facilities [142]. Studies of that type have the potential to study the equa-

tion of state for nuclei far from equilibrium. With regard to quasi-free A(e, e′p), a recent

development includes the study of possible medium modifications of electromagnetic form

factors through double polarization experiments of the type 4He(~e, e′~p) [143]. Another ac-

tive line of current research with electrons is the two-nucleon removal reaction (A(γ, pp)

and A(e, e′pp)) in selected kinematics. This process is expected to provide a window on

the short-range structure of nuclei when performed at sufficiently high values of the four-

momentum transfer [65].

The development of an appropriate reaction theory is essential for reliably extracting

the physical information from the nucleon removal reactions. For nucleon kinetic energies
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up to about 1 GeV the distorted wave impulse approximation (DWIA) with appropriately

constrained optical potentials, has enjoyed many successes in that it could reproduce fairly

well a large amount of measurements [138]. Constraining the optical potentials heavily

depends on the availability of elastic proton-nucleus scattering data. Moreover, the optical

potentials exhibit a substantial kinetic-energy dependence. This energy dependence makes

it difficult to make more general statements about e.g. the role of attenuation effects and

the effective densities probed in the various reactions. At sufficiently high nucleon energies

the Glauber approach provides a valid alternative for the DWIA framework. The Glauber

approach has the advantage that the effect of initial and final-state interactions (ISIs and

FSIs) can be computed from the knowledge of the elementary proton-proton and proton-

neutron differential cross sections and a nuclear-structure model for the density of the

target (residual) nucleus. Moreover, for nucleon momenta exceeding about 1 GeV the en-

ergy dependence of the parameters entering the Glauber calculations is relatively smooth.

This results, for example, in nuclear A(e, e′p) transparencies which exhibit little energy de-

pendence at larger nucleon kinetic energies [74]. From the theoretical point of view, it

allows one to make more universal statements about the predicted role of nuclear attenua-

tions. Another advantage of the Glauber approach is that it is applicable to a wide range of

reactions, including electromagnetic and hadronic probes, with stable and unstable nuclei

[144, 145].

In this section we exploit the robustness of the Glauber approach to study the density

dependence of quasi-free nucleon removal reactions for ejected protons with a kinetic en-

ergy of 1.5 GeV . Indeed, investigations into the medium dependence of nucleon properties

and the study of the nuclear structure of unstable nuclei e.g., heavily rely on the possibility

of effectively probing regions of sufficient density in the target nucleus. Nuclear attenuation

effects on the impinging and ejected protons can make nucleon removal reactions to effec-

tively probe regions of relatively small density near the surface of the target nucleus. With

respect to the description of nuclear attenuation effects, which exhibit a certain degree of

model dependence, we stress the importance of making cross checks over different fields

(electromagnetic versus hadronic probes) and of studying varying numbers of hadrons that

are subject to nuclear attenuation. Here, we compare the effective nuclear density that

can be probed in reactions that have one nucleon (A(e, e′p)), two nucleons (A(e, e′pp)) and

three nucleons (A(p, 2p)) subject to nuclear attenuation effects.

In a factorized approach, the differential cross sections for the single-nucleon removal

reactions considered here (i.e. A(p, 2p) and A(e, e′p)) are proportional to the distorted
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momentum distributions ρD(~pm) of Eq. (2.29)

ρD
nκ(~pm) =

1

(2π)3
∑

s,m

�

�

�

�

∫

d~re−i~pm·~r ū(~pm, s)FRMSGA(~r)φnκm(~r)

�

�

�

�

2

=
1

2(2π)3

∫

dr

∫

dθ





∑

s,m

D(r,θ)†ū(~pm, s)φD
nκm

+ D(r,θ)
�

ū(~pm, s)φD
nκm

�†
i

≡
∫

drdθδ (r,θ)

≡
∫

drδ (r) , (3.8)

where the quantum numbers (n,κ) determine the shell of the struck nucleon. The missing

momentum ~pm is determined by the difference between the asymptotic three-momentum ~p

of the ejected nucleon and the three-momentum transfer ~q. We define the z-axis along the

~q and the xz-plane as the reaction plane. The function δ(r) (δ(r,θ)) defined in Eq. (3.8)

encodes the contribution from an infinitesimal interval around r (r and θ) to a single-

nucleon removal cross section [140]. The function D(r,θ) which was introduced in (3.8)

reads

D(r,θ) =

∫

dφ sinθ e−i~pm·~r ū(~pm, s)FRMSGA(~r)φnκm(~r) . (3.9)

The Glauber phase operator FRMSGA(~r) encodes the combined effect of the initial and final-

state interactions [73, 75]. Along the lines of Eq. (3.8), we can formulate a similar function

δ(R,θ) for the A(γ, pp) and A(e, e′pp) reactions describing the knockout of a correlated pair

in a relative S-state, by departing from the distorted momentum distributions of Eq. (3.1):

ρD
n1κ1n2κ2

(~Pm)≡
∫

dRdθδ(R,θ)≡
∫

dRδ(R) . (3.10)

with ~Pm = ~k1 − ~k2 + ~q (where ~q is the momentum of the incoming photon and ~ki the

asymptotic momenta of the ejected nucleons).

In Fig. 3.20 we display the function δ(r,θ) defined in the Eq. (3.8) for proton knockout

from the 1s1/2 and 1p3/2 shell from a 12C target. We compare the (p, 2p) with the (e, e′p)

result for an energy transfer of 1.5 GeV and conditions probing the maximum of the undis-

turbed momentum distribution ρnκ(~p). The latter can be obtained by setting FRMSGA = 1.

In the considered kinematics, it is clear that in the absence of nuclear attenuation effects

(RPWIA), the upper (0◦ ≤ θ ≤ 90◦) and lower hemisphere (90◦ ≤ θ ≤ 180◦) of the target

nucleus would equally contribute to δ(r,θ) and the measured signal. Moreover, the δ(r,θ)

becomes equal for (e, e′p) and (p, 2p). The ISI and FSI have the strongest impact at the
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Figure 3.20 The function δ(r,θ) for the 12C(e, e′p) and 12C(p, 2p) reaction. For both types of
reaction we consider an energy transfer of 1.5 GeV and a three-momentum transfer ~q which probes
the maximum of the momentum distribution (i.e. pm=0 MeV for knockout from the 1s1/2-shell and
pm=115 MeV for removal from the 1p3/2-shell). For the (e, e′p) results, the proton is detected along
the direction of the momentum transfer. For the (p, 2p), the incoming proton has a kinetic energy of
about 3 GeV and the two ejected protons have a kinetic energy of 1.5 GeV. They are detected under
an angle of about 32◦ but on opposite sides of the incoming beam. For the sake of reference, the

proton rms radius in 12C as determined from elastic electron scattering is
¬

r2
¶1/2

= 2.464±0.012fm
[146].
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Figure 3.21 The function δ(r,θ) for the 56Fe(e, e′p) and 56Fe(p, 2p) reaction. For both types of
reaction we consider an energy transfer of 1.5 GeV and a three-momentum transfer ~q which probes
the maximum of the momentum distribution (i.e. pm=0 MeV for knockout from the 1s1/2-shell and
pm=100 MeV for removal from the 1p3/2-shell). For the (e, e′p) results, the proton is detected along
the direction of the momentum transfer. For the (p, 2p), the incoming proton has a kinetic energy of
about 3 GeV and the two ejected protons have a kinetic energy of 1.5 GeV. They are detected under
an angle of about 32◦ but on opposite sides of the incoming beam.
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Figure 3.22 The function δ(r,θ) for the 56Fe(e, e′p) and 56Fe(p, 2p) reaction. For both types of
reaction we consider an energy transfer of 1.5 GeV and a three-momentum transfer ~q which probes
the maximum of the momentum distribution (i.e. pm=140 MeV for knockout from the 1d3/2-shell
and pm=180 MeV for removal from the 1 f 7/2-shell). For the (e, e′p) results, the proton is detected
along the direction of the momentum transfer. For the (p, 2p), the incoming proton has a kinetic
energy of about 3 GeV and the two ejected protons have a kinetic energy of 1.5 GeV. They are
detected under an angle of about 32◦ but on opposite sides of the incoming beam.
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highest nuclear densities, which makes the δ(r,θ) to shift to larger values of the radial

coordinate r. In addition, the contribution from the upper and lower hemisphere becomes

asymmetric when considering attenuation mechanisms. Indeed, the nuclear hemisphere

which is closest to the proton detector will provide the strongest contribution to the de-

tected signal. The stronger the effect of attenuations, the larger the shifts in r, the larger

the induced asymmetries between the upper and lower hemisphere and the stronger the

reduction. Obviously, the asymmetry, shift and reduction occur for the δ(r,θ) in (e, e′p)

and (p, 2p). All three effects, however, are far more pronounced for the (p, 2p) than for the

corresponding (e, e′p) δ(r,θ). The same observations apply for Figs. 3.21 and 3.22, where

we plotted the δ(r,θ) function for a 56Fe target for the same kinematical conditions as in

Fig. 3.20. Fig 3.21 shows results for the inner 1s1/2 and 1p3/2 shells, and Fig. 3.22 for

the outer 1d3/2 and 1 f 7/2 shells. A comparison between the two figures also shows the

greater reduction by the FSI of the signal strength for the inner shells in Fig. 3.20.

In Fig. 3.23 we display for the 12C target the function δ(R,θ) defined in the Eq. (3.10)

for two-proton knockout from the (1s1/2−1s1/2)-, (1s1/2−1p3/2)-, and (1p3/2−1p3/2)-

orbits. Comparing Figs. 3.20 and 3.23 it is clear that two-proton removal at high energies,

really succeeds in probing the high-density regions of the target nucleus (note the different

range in the radial coordinate r for Figs. 3.20 and 3.23. The attenuation mechanisms

induce shifts to the surface but the bulk of the measured strength can be clearly attributed

to high-density regions in the target nucleus. Results for the 56Fe target are shown in

Fig. 3.21 for several two proton removals from the same shell . Here too, higher densities

are probed when compared to the (e, e′p) and (p, 2p) results.

In order to quantify the average densities that the various reactions can probe, we in-

troduce [82, 140]

ρ =

∫

drdθρp (~r)δ (r,θ)
∫

drdθδ (r,θ)
, (3.11)

where ρ (~r) is the density of the target nucleus and δ(r,θ) [or δ(R,θ)] the function as it

was defined in Eq. (3.8) [(3.10)]. Table 3.6 lists a systematic comparison of the computed

values of ρ for 12C and 56Fe. For both nuclei, the average density probed in the two-proton

removal reaction from the (1s1/2−1s1/2) orbits approaches the nuclear saturation density

of ρ0 = 0,17fm−3. We wish to stress the strong dependence on the nuclear orbit. Despite

the strong attenuation, the (p, 2p) reaction from the 1s1/2 orbit in 12C can effectively probe

higher densities than the (e, e′p) reaction from the valence 1p3/2 shell. One can also see

that the difference in densities probed between the different reactions is less pronounced

for 56Fe than for 12C. Densities for both the 1s1/2 and 1 f 7/2 orbit in A(p, 2p) are about
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Figure 3.23 The function δ(r,θ) for the exclusive 12C(γ, pp) cross section. In all situations we
consider an energy transfer of 3 GeV and a three-momentum transfer ~q which probes the maximum
of the momentum distribution ρα1α2

(~P) (i.e. P=0 MeV for knockout from the (1s1/2− 1s1/2)- and
(1p3/2−1p3/2)-orbits, and P=160 MeV for removal from the (1s1/2−1p3/2)-orbits). We consider
coplanar and symmetric kinematics.
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Figure 3.24 The function δ(r,θ) for the exclusive 56Fe(γ, pp) cross section. In all situations we
consider an energy transfer of 3 GeV and a three-momentum transfer ~q which probes the maximum
of the momentum distribution ρα1α2

(~P) (i.e. P=0 MeV for knockout from all orbits). We consider
coplanar and symmetric kinematics.



3.4. DENSITY DEPENDENCE 81

Nucleus Reaction Orbits ρ(RPW IA) [fm−3] ρ(RMSGA) [fm−3]
12C (e, e′p) 1s1/2 0.09975 0.08563
12C (p, 2p) 1s1/2 0.09975 0.05548
12C (e, e′p) 1p3/2 0.04966 0.03821
12C (p, 2p) 1p3/2 0.04966 0.02547
12C (γ, pp) (1s1/2− 1s1/2) 0.15005 0.13493
12C (γ, pp) (1p3/2− 1p3/2) 0.09547 0.07533
12C (γ, pp) (1s1/2− 1p3/2) 0.11546 0.09847
56Fe (e, e′p) 1s1/2 0.12631 0.11335
56Fe (p, 2p) 1s1/2 0.12631 0.07784
56Fe (e, e′p) 1p3/2 0.11547 0.10228
56Fe (p, 2p) 1p3/2 0.11547 0.06991
56Fe (e, e′p) 1d3/2 0.09444 0.08056
56Fe (p, 2p) 1d3/2 0.09444 0.05295
56Fe (e, e′p) 1 f 7/2 0.07793 0.06587
56Fe (p, 2p) 1 f 7/2 0.07793 0.04500
56Fe (γ, pp) (1s1/2− 1s1/2) 0.14513 0.13828
56Fe (γ, pp) (1p3/2− 1p3/2) 0.14005 0.12610
56Fe (γ, pp) (1d3/2− 1d3/2) 0.12982 0.10730
56Fe (γ, pp) (1 f 7/2− 1 f 7/2) 0.10995 0.08679

Table 3.6 The average density ρ probed in various reactions.

half of those in A(γ, pp) in iron, whereas in carbon they are more about one third for

both the 1s1/2 and the 1p3/2. For the (p, 2p) reaction with knockout from the 1s1/2

orbit, the predicted effective mean density from the RMSGA calculations is ρ ≈ 0.33ρ0.

This number is almost identical to the DWIA results of Ref. [82] for 12C(p, 2p) for 1 GeV

incoming protons. Figs. 3.25 and 3.26 show δ(r) and δ(R) for knockout from the Fermi

level of 12C and 56Fe compared to r squared times the nuclear density. Here, one can again

clearly see only the (γ, pp) reaction succeeds in probing the high density region while the

dominating contributions for the (e, e′p) and (p, 2p) reactions stem from regions more than

1 fm removed from this maximum.



82 CHAPTER 3. NUMERICAL RESULTS

r [fm]0 2 4 6

]
-1

 [
fm

ρ2 r

0

0.2

0.4

(e,e’p) & (p,2p)

r [fm]0 2 4 6
]

-1
 [

fm
ρ2 r

0

0.2

0.4

,pp)γ(

Figure 3.25 Contribution to the exclusive 12C(e, e′p) (green) , 12C(p, 2p) (blue, left panel) and
12C(γ, pp) (blue, right panel) cross section as a function of the radial coordinate r. The black solid
line shows r2ρ(r) for the 12C nucleus. The kinematic conditions are those of Figs. 3.20 and 3.23.
We consider one- and two-nucleon removal from the 1p3/2-shell. The RPWIA result is displayed in
red. The ordinate is given for r2ρ(r). The δ(r) are plotted in units fm2 up to an arbitrary scaling
factor.
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Figure 3.26 Contribution to the exclusive 56Fe(e, e′p) (green) , 56Fe(p, 2p) (blue, left panel) and
56Fe(γ, pp) (blue, right panel) cross section as a function of the radial coordinate r. The black solid
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Chapter 4
Conclusions

In this work, we have addressed the issue of the crossover between the hadronic and par-

tonic degrees of freedom. To study this crossover, we outlined a relativistic and quantum

mechanical framework based on hadronic degrees of freedom. It was employed in this

thesis to describe single pion, pion-nucleon and two-nucleon removal reactions from nu-

clear targets. For these removal reactions, sophisticated calculations were compared to

data taken in the search for the onset of QCD phenomena at intermediate energies. Such

an onset (e.g. of the color transparency effect) manifests itself in deviations between these

data and our calculations.

The model used to perform the calculations is devoid of free parameters and both kine-

matics and dynamics are treated in a relativistic manner. The relativistic bound-state wave

functions for the nucleons in the initial and residual nucleus are obtained in an independent

particle model, based on the Hartree approximation to the σ−ω model [147]. We treat

the interaction of the incoming beam with the target nucleus in the impulse approxima-

tion. The effect of final-state interactions on the detected nucleons and pions is described

in the eikonal approximation. Originating from optics, this eikonal approximation is a

semi-classical method that uses linear trajectories for particles that are subject to elastic

and mildly inelastic rescattering over small angles. Typically, the wavelength of the incom-

ing particle is small in comparison with the range of the scattering potential.

At sufficiently high nucleon and pion energies, the intranuclear attenuation on the

ejected particles can be computed with a relativistic version of the Glauber model dubbed

RMSGA. The attenuating effect of the medium on the ejected particles is computed by

means of a Glauber phase operator. The numerical computation of the latter, requires

knowledge about πN → πN and N ′N → N ′N scattering data. In contrast to the models

available in the literature, which adopt a semi-classical approach, our description of the

FSI mechanisms is quantum mechanical and relativistic. For nucleons with low momenta
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where the conditions to apply a Glauber approach are not valid anymore, the framework

offers the flexibility to compute the effect of FSI in a ROMEA model. The ROMEA model

incorporates the FSI with the help of optical potentials, adopting an eikonal approxima-

tion. These optical potentials are based on global fits to elastic nucleon-nucleus scattering

data (as opposed to the nucleon-nucleon scattering approach of the RMSGA). Analysis of

the RMSGA FSI factor, that contains all the medium attenuation for an escaping nucleon

and pion, showed that the effect of distortions (both in the norm and the phase of the FSI

factor) grows when larger amounts of nuclear matter are transversed. The biggest attenua-

tions occurred when the particles transverse long chunks of nuclear material. The effect of

short-range correlations on the FSI can also be included in our model calculations. This was

done by replacing the nuclear density in the integrations of the FSI factor with a modified

one, accounting for the presence of a nucleon at the point of the hard interaction in the

removal process, along the lines of Ref. [125]. A hole is introduced in this modified density

that reflects the hard core of the nucleon-nucleon interaction, and densities are enhanced

at the edge of this hole. Normalization of this modified density was ensured by the intro-

duction of a γ(~r) function, and a solution for this function was found through solving an

integral equation.

We performed transparency calculations for kinematics corresponding to completed and

planned experiments [47, 49, 50, 127]. These transparency experiments are looking for the

onset of color transparency. We implemented the CT effect in our model via the quantum

diffusion model of Farrar et al. [112]. This replaces the total cross section parameter in

the Glauber profile function with an effective one. This effective cross section evolves from

a reduced value (accounting for the reduced interaction of a color transparent PLC) to the

normal value along a certain formation length.

Our pion electroproduction transparency calculations including the CT effect are in good

agreement with the data taken at Jefferson Lab [50]. Both the energy dependence and the

A dependence of the transparency show deviations from the traditional nuclear physics ex-

pectations and are in agreement with calculations including the effect of CT. The quality of

agreement with the JLab data [47] was worse for the pion photoproduction calculations.

The calculations overpredict the measured 4He(γ, pπ−) transparencies and fall short in re-

producing their low-|t| dependence. At higher values of |t|, the slope of the calculations

including CT is in better agreement with the data than those without. In order to check

the robustness of our results, we compared the Glauber and optical-potential based models

for nucleon momenta where both approaches can be applied. The calculations predicted

transparencies in 4He that follow similar trends in both models. The differences in the mag-

nitude of the transparency are smaller than 5% and shrink with higher nucleon momentum.
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Our RMSGA predictions for the pion electroproduction transparencies are also in reason-

able agreement with the semiclassical results of Larson, Miller and Strikman. Both models

predict similar trends, with the RMSGA predictions for the pion transparencies being sys-

tematically ∼ 5% higher. This provides strong support for that the baseline nuclear-physics

transparencies can be computed in a rather model-independent fashion. Better opportuni-

ties to study the onset of CT phenomena will become available at the upgraded Jefferson

Lab facility. We predict an increase of the transparency of over 20 % at the highest ener-

gies due to color transparency. Transparencies are also enhanced through the inclusion of

SRC effects in the calculations. This yields an increase of about 5%, independent of the

hard-scale. Accordingly, the SRC and CT mechanisms can be clearly separated.

For the photo-induced two-proton knockout reaction, we performed calculations in

kinematics corresponding to an experiment completed at JLab and currently undergoing

analysis [49]. Our model for two-nucleon knockout accomodates two competing reaction

mechanisms, one of the single-step (or direct) type, and one of the two-step type. The

single-step mechanism describes the process as the knockout of a correlated pair, residing

in a relative S-state. The two-step mechanism uses a hard rescattering mechanism, whereby

the nucleon that interacts with the incoming photon knocks out a second nucleon on its way

out of the nucleus. Transparency calculations confirmed the trends established in the pion

photoproduction calculations with a transparency rising for low |t|. The magnitude of the

transparency, however, was lower than what could be naively expected from the A(e, e′p)

values. For the knockout of a relative S pair, this was due to the reaction probing high

density regions. For the hard rescattering reaction, excluding the FSI of the intermediate

nucleon propagator increased the transparency with around 5%. Transparencies values in

the rescattering model were lower than those for the knockout of a correlated pair, implying

even higher density regions are probed in this reaction mechanism.

Finally, we exploited the robustness and multifaceted properties of the relativistic Glau-

ber framework to make a comparative and consistent study of the effective nuclear densities

that can be probed in (p, 2p), (e, e′p) and (γ, pp) reactions. As representative examples we

selected a carbon and iron target and ejected proton kinetic energies of 1.5 GeV. The (e, e′p)

reaction has the potential to probe reasonable densities. Of all reactions considered, the

(γ, pp) reaction is the one that can get closest to the deep nuclear interior. The (p, 2p) reac-

tion is subject to large attenuation, but a high resolution experiment picking protons from

s-orbits in 12C, for example, can probe densities that are of the order of 30% of the nuclear

saturation density. Calculations in iron showed similar trends, but the reduction of the ef-

fectively probed densities in (e, e′p) and (p, 2p) compared to (γ, pp) was less pronounced

than in carbon. These findings are of importance for ongoing and planned searches of
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nuclear effects at small distance scales.

Outlook

In order to establish the onset of CT effect on a firm footing, it is important to extend

the pion transparency measurements to higher energies, where the largest CT effects are

predicted. The upgrade of Jefferson Lab to 12 GeV that is currently underway will make

this possible and experiments are already being planned. We can also extend our model

to include reactions with a kaon or rho meson in the final state, so that it allows us to

perform calculations for the completed JLab experiment [45]. As experimental information

about kaon-nucleon and rho-nucleon scattering is rather limited, the parameters entering

the Glauber phase are not as well determined as for the nucleon and pion. There is still

room for improvement in the two-nucleon knockout calculations. For instance, the two

competing reaction mechanisms can be combined on amplitude level and the resulting

interference effects can be studied.

Other improvements and extensions to the model can also be made. Realistic wave

functions for light nuclei could be included. The description of the correlations in the FSI

could be improved through the inclusion of tensor correlations. However, we estimate

that the correction due to the tensor correlations would be small, as the medium-range

character of these correlations reaches beyond the small transverse range of the Glauber

FSI. As correlations imply high density fluctuations, there is also the possibility to include a

model for the correlations that departs from partonic degrees of freedom. In combination

with the hadronic picture used in this work, this would give us a kind of hybrid model

wherein the two approaches could be compared with each other and with results from

experiments.



Appendix A
Notations and Abbreviations

Notations

The spin vector operator acts on two component spinors and is defined as

~σ = (σx ,σy ,σz) = σ
i~ei ≡ (~σ ·~e

†
i )~ei , (A.1)

where the Pauli matrices are given by

σx =
�

0 1
1 0

�

, σy =
�

0 −i
i 0

�

, σz =
�

1 0
0 −1

�

. (A.2)

The Dirac or γ matrices are defined by the anticommutation relations

{γµ,γν}= 2gµν . (A.3)

In the Pauli-Dirac representation used throughout this work, they are written as

γ0 =
�

1I 0
0 −1I

�

, γi =
�

0 σi

−σi 0

�

. (A.4)

γ5 is defined as

γ5 = iγ0γ1γ2γ3 , (A.5)

and the commutators σµν as

σµν =
i

2

�

γµ,γν
�

. (A.6)

The matrices β and αi are defined as

β = γ0 , ~αγ0~γ . (A.7)
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Abbreviations
BNL Brookhaven National Laboratory
c.m. center of mass
CT color transparency
EA eikonal approximation
FSI final-state interactions
GPD generalized parton distribution
HRM hard rescattering model
IA impulse approximation
IPM independent particle model
ISI initial state reactions
LRC long-range correlations
MAMI Mainz microtron
NIKHEF Nationaal Instituut voor Kernfysica en Hoge-energiefysica
PLC point-like configuration
pQCD perturbative quantum chromodynamics
QCD quantum chromodynamics
QED quantum electrodynamics
(R)DWIA (relativistic) distorted-wave impulse approximation
RMSGA relativistic multiple-scattering Glauber approximation
ROMEA relativistic optical model eikonal approximation
(R)PWIA (relativistic) plain-wave impulse approximation
SRC short-range correlations



Appendix B
Relativistic Bound-State Wave Functions

The wave functions for the bound nucleons are constructed in an independent-particle

model (IPM). We use relativistic wave functions from the Hartree approximation to the

Walecka model with the W1 parametrization [147]. For the sake of conciseness of the

notation, only the spatial coordinates of the nucleons are written throughout this work.

The single-particle wave functions φα adopt the following form for a spherically symmetric

nuclear potential [148]:

φα(~r)≡ φnκm(~r, ~σ) =

�

i Gnκ(r)
r
Yκm(Ω, ~σ)

− Fnκ(r)
r
Y−κm(Ω, ~σ)

�

. (B.1)

Here, n is the principal quantum number and κ and m denote the generalized angular

momentum quantum numbers. The spin spherical harmonics Y±κm are defined as:

Yκm(Ω, ~σ) =
∑

ml ms

〈lml

1

2
ms| jm〉Ylml

(Ω)χ 1
2

ms
(~σ) ,

Y−κm(Ω, ~σ) =
∑

ml ms

〈l̄ml

1

2
ms| jm〉Yl̄ml

(Ω)χ 1
2

ms
(~σ) , (B.2)

with j = |κ| −
1

2
, l =

�

κ, κ > 0
−κ− 1, κ < 0 , l̄ =

�

κ− 1, κ > 0
−κ, κ < 0 .

The Fourier transform of the bound-state wave functions (B.1) is given by

φα(~p) =

∫

d~re−i~r·~pφα(~r) = (−i)l(2π)3/2
�

gnκ(p)Yκm(Ωp)
−Sκ fnκ(p)Y−κm(Ωp)

�

, (B.3)
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with Sκ = κ/|κ|. The radial functions gnκ(~p) and fnκ(~p) are defined by

gnκ(~p) =

r

2

π

∫ ∞

0

r2dr
Gnκ(r)

r
jl(pr) , (B.4)

fnκ(~p) =

r

2

π

∫ ∞

0

r2dr
Fnκ(r)

r
jl(pr) , (B.5)

with jl(pr) the spherical Bessel function of the first kind.



Appendix C
Klein-Gordon Scattering

We consider the relativistic scattering of a spinless particle with mass m in the presence of

a potential V (r). The time-independent Klein-Gordon equation of the system is given by

(p̂2+m2)ψ(~r) = (E − V (r))2ψ(~r) , (C.1)

with E =
p

k2+m2 and ~̂p the momentum operator. We consider an incoming plane wave

Φ~ki
(~r) =

1

(2π)3/2
ei~ki ·~r , (C.2)

and a scattering wave function that obeys the asymptotic boundary condition

ψ
(+)
~ki
(~r)−−→

r→∞
A

�

ei~ki ·~r + f (Ω)
eikr

r

�

. (C.3)

Here, A is a normalization factor, f (Ω) is the scattering amplitude, and we assume that

the potential V (r) vanishes faster than r−1 for r →∞. The conserved probability current

associated with the Klein-Gordon Eq. (C.1) is

jµ(~r) =−
i

2m

��

ψ†(~r)
�

∇µψ(~r)−ψ(~r)
�

∇µψ†(~r)
��

. (C.4)

After a derivation similar to the one made for the Schrödinger case in [104], one readily

finds

dσ

dΩ
= | f (Ω)|2 . (C.5)

We can write Eq. (C.1) as

(E2− p̂2)ψ(~r) = (2EV (r)− V 2(r))ψ(~r) , (C.6)
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and its solution as an integral equation

ψ
(+)
~ki
(~r) =

1

(2π)3/2
ei~ki ·~r +

∫

d~r ′G(+)0 (~r,~r ′)(2EV (r ′)− V (r ′)2)ψ(+)~ki
(~r ′) . (C.7)

When adopting the following form of the Green’s function

G(+)0 (~r,~r ′) =−
1

4π

eik|~r−~r ′|

|~r −~r ′|
, (C.8)

the wave function ψ(+)~ki
(~r) has the asymptotic form of Eq. (C.3) For r →∞, we can write

Eq. (C.7) as

ψ
(+)
~ki
(~r)→

1

(2π)3/2
ei~ki ·~r +

eikr

r

�

−
1

4π

∫

d ~r ′e−i~k f ·~r ′(2EV (r ′)− V 2(r ′))ψ(+)~ki
(~r ′)

�

, (C.9)

where ~k f = k~r/r . Comparing this with Eq. (C.3) and taking A= (2π)−3/2 gives us

f (Ω) =−(2π)2E〈Φ~k f
| V −

V 2

2E
|ψ(+)~ki

〉 . (C.10)

If the wavelength of the incident particle is sufficiently short in comparison with the

distance in which the potential varies (ka � 1, with a the typical range of the potential,

and V/E� 1), the eikonal approximation can be used. Scattering is assumed to occur over

small angles and we can write

p̂2 = [(~̂p− ~K) + ~K]≈ 2~K · ~̂p− K2 , (C.11)

with

~K =
~ki +~k f

2
. (C.12)

This allows us to write Eq. (C.1) as
�

~K · ~̂p− K2−
V 2(r)

2
+ V (r)E

�

ψ(~r) = 0 . (C.13)

Employing the eikonal ansatz for the scattering wave function

ψ~ki
=

1

(2π)3/2
ei~ki ·~r eiS(r) , (C.14)

and substituting it in Eq. (C.13) yields the following equation for the eikonal phase S(r)

~K · ~∇S(r) =
V 2(r)

2
− V (r)E . (C.15)
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If we choose the z-axis along ~K , we obtain (with ~b perpendicular to the z-axis)

iS(r) =
i

K

∫ z

−∞
dz′
�

V 2(~b, z′)
2

− V (~b, z′)E

�

. (C.16)

We can now write the scattering amplitude of Eq. (C.10) as

f (Ω) =−
E

2π

∫

d~bei~q·~b

∫

dzeiS(r)

�

V (r)−
V 2(r)

2E

�

, (C.17)

where ~q =~ki −~k f . To simplify this last equation, we can make use of

�

V (r)−
V 2(r)

2E

�

eiS(r) =
iK

E

deiS(r)

dz
(C.18)

to write

f (Ω) =
K

2πi

∫

d b2ei~q·~b
�

eiχ(~b)− 1
�

, (C.19)

with

χ(~b) =
1

K

∫ ∞

−∞
dz′
�

V 2(~b, z′)
2

− V (~b, z′)E

�

. (C.20)
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Appendix D
NN Amplitudes: Representations

The helicity amplitudes for the free nucleon-nucleon scattering process are defined as

Mλ′1λ
′
2;λ1λ2

= [ūλ′1(
~p′1)]α[ūλ′2(

~p′2)]βD
NN
αβ;γδ[uλ1

(~p1)]γ[uλ2
(~p2)]δ , (D.1)

where λ denotes the helicity of the spinor. They can be expanded into a partial wave sum

as

Mλ′1λ
′
2;λ1λ2

=
1

2ik

∑

J

(2J + 1)〈λ′1λ
′
2 | T

J(E) | λ1λ2〉d J
µν(θ) , (D.2)

with k and θ the momentum and scattering angle in the center of mass frame and µ =

λ1−λ2, ν = λ′1−λ
′
2. The Wigner D-matrices d J

µν(θ) satisfy

d J
µν(θ) = (−1)λ−µd J

νµ(θ) = (−1)λ−µd J
−ν−µ(θ) . (D.3)

Parity, time-reversal and particle exchange symmetries can respectively be used to write

〈λ′1λ
′
2 | T

J(E) | λ1λ2〉= 〈−λ′1−λ
′
2 | T

J(E) | −λ1−λ2〉 ,

〈λ′1λ
′
2 | T

J(E) | λ1λ2〉= 〈λ1λ2 | T J(E) | λ′1λ
′
2〉 ,

〈λ′1λ
′
2 | T

J(E) | λ1λ2〉= 〈λ′2λ
′
1 | T

J(E) | λ2λ1〉 . (D.4)

By using Eqs. (D.3) and (D.4) in Eq. (D.2), the total helicity amplitudes satisfy

〈−λ′1−λ
′
2 | T

J(E) | −λ1−λ2〉= (−1)λ1−λ2−λ′1+λ
′
2〈λ′1λ

′
2 | T

J(E) | λ1λ2〉 ,

〈λ1λ2 | T J(E) | λ′1λ
′
2〉= (−1)λ1−λ2−λ′1+λ

′
2〈λ′1λ

′
2 | T

J(E) | λ1λ2〉 ,

〈λ′2λ
′
1 | T

J(E) | λ2λ1〉= (−1)λ1−λ2−λ′1+λ
′
2〈λ′1λ

′
2 | T

J(E) | λ1λ2〉 . (D.5)
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These symmetry relations can be used to reduce the total amount of independent helicity

amplitudes from 16 to 5:

a ≡M1,1;1,1 =M−1,−1;−1,−1 ,

b ≡M1,1;1,−1 =M1,−1;1,1 =M1,1;−1,1 =M−1,1;1,1

=M−1,−1;−1,1 =M−1,−1;1,−1 =M−1,1;−1,−1 =M1,−1;−1,−1 ,

c ≡M1,−1;1,−1 =M−1,1;−1,1 ,

d ≡M1,1;−1,−1 =M−1,−1;1,1 ,

e ≡M1,−1;−1,1 =M−1,1;1,−1 . (D.6)

These five helicity amplitudes are available online from the SAID database [68] for lab

momentum up to 2 GeV. After substituting Eq. (2.75) in Eq. (D.1) for these five amplitudes

and solving for the Fermi invariants, one gets [96]














FS

FV

FT

FP

FA















=
1

s− 4m2















a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55





























a
b
c
d
e















, (D.7)

with

a11 =−a24 = a25 =−2a31 = a41 =−a54 = a55 =−
2m4

s
,

a14 =−a15 =−a21 =−2a34 = 2a35 = a44 =−a51 =
2m4

s
−m2 ,

a12 =
m
�

8m2− (3+ cosθ)s
�

p
s sinθ

,

a13 =
m2 �2m2(1+ cosθ)− s(3+ cosθ)

�

s(1+ cosθ)
,

a22 =
4m3(1+ cosθ)
p

s sinθ
,

a23 =
2m2 �m2(1+ cosθ) + s

�

s(1+ cosθ)
,

a32 =−
m
p

s(1− cosθ)
2sinθ

,

a33 =−
m2 �2m2(1+ cosθ) + s(1− cosθ)

�

2s(1+ cosθ)
,

a42 =−
m
�

8m2+ s(3+ cosθ)
�

p
s sinθ

,
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a43 =
m2 �2m2(1+ cosθ)− s(3+ cosθ)

�

s(1+ cosθ)
,

a45 =−
m2 �2m2(1− cosθ) + s(7+ cosθ)

�

s(1− cosθ)
,

a52 =−
4m3(1− cosθ)
p

s sinθ
,

a53 =
2m2 �m2(1+ cosθ)− s

�

s(1+ cosθ)
. (D.8)

In all these equations θ is the scattering angle in the center of mass system and s is the

Mandelstam variable.
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Appendix E
Parametrization of the pion
electroproduction cross section

With the notations used in subsec. 2.1.2, the pion electroproduction cross section of Eq.

(2.46), can be written as the product of the electron fluxfactor with the sum of four response

functions:

d5σeN

dEe′dΩe′d|t|dφ∗π
= Γ′

�

dσeN
T

d|t|
+ ε

dσeN
L

d|t|

+ε
dσeN

T T

d|t|
cos2φ∗π+

p

ε(ε+ 1)
dσeN

T L

d|t|
cosφ∗π

�

. (E.1)

In JLab experiment E01-004, that measured the pion charge form factor through pion elec-

troproduction, the four response functions in Eq. (E.1) were initially parametrized as [130]

dσeN
T

d|t|
= f (s′)

�

4.5/Q2+ 2/Q4
�

,

dσeN
L

d|t|
= f (s′)350Q2 e−t(16−7.5 lnQ2)

(1+ 1.77Q2+ 0.05Q4)2
,

dσeN
T T

d|t|
=− f (s′)

5

Q4

|t|
(|t|+ 0.02)2

sinθ ∗π
2 ,

dσeN
T L

d|t|
= f (s′)

�

e
0.79− 3.4p

Q2
t
+ 1.1− 3.6/Q4

�

sinθ ∗
π

. (E.2)

Here, θ ∗
π

denotes the pion angle with the virtual photon in the pion-nucleon c.o.m. frame

and the dependence on the Mandelstam variable s′ = (pµN + pµπ)
2 is assumed to have the

following t-pole dependence

f (s′) =
8.539

2π(s′−m2
N)

2 . (E.3)
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SECTION

For the pion electroproduction transparency experiment, a multiplicative correction func-

tion was applied to the parametrization of Eq. (E.1) for each Q2 setting to make the Monte

Carlo distributions match the data [129]. These functions for each Q2 setting are as follows

(with W =
p

s′):

Q2 = 1.10(GeV/c)2 → (−47.5984+ 43.4145W − 9.64264W 2)

× (1.32289− 0.698424Q2+ 0.35561Q4)

× (1.17152− 7.03367t + 52.053t2)

× (1.0612+ 0.147858cosφ∗π− 0.0430268 cos2φ∗π)

Q2 = 2.15(GeV/c)2 → (−23.1723+ 20.6505W − 4.37408W 2)

× (2.29646− 1.11745Q2+ 0.229736Q4)

× (0.704879+ 1.61954t + 0.0859429t2)

× (0.979176+ 0.044882 cosφ∗π− 0.0743073cos 2φ∗π)

Q2 = 3.00(GeV/c)2 → (−6.14191+ 5.64149W − 1.0843W 2)

× (2.43486− 0.888779Q2+ 0.136267Q4)

× (0.745356+ 1.22215t − 1.24105t2)

× (0.962609− 0.0608404 cosφ∗π− 0.0084712 cos2φ∗π)

Q2 = 4.00(GeV/c)2 → (−7.8696+ 6.48878W − 1.16624W 2)

× (−0.703888+ 0.814839Q2− 0.0957087Q4)

× (0.723372+ 0.140101t + 0.809151t2)

× (1.00054− 0.100002 cosφ∗π+ 0.00780768cos 2φ∗π)

Q2 = 4.80(GeV/c)2 → (−11.1202+ 9.4995W − 1.86788W 2)

× (2.27339− 0.469771Q2+ 0.0421723Q4)

× (1.08961− 1.06851t + 1.36125t2)

× (0.89789− 0.118188 cosφ∗π− 0.0350948cos 2φ∗π) .
(E.4)
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Samenvatting

Inleiding

Sinds de ontwikkeling in de jaren ’50 en ’60 van kwantumchromodynamica (QCD) als ijk-

theorie voor de sterke wisselwerking, weet men dat quarks en gluonen de fundamentele

bouwstenen vormen voor haast alle zichtbare materie. Door het confinementgedrag van

QCD, treden bij lage energieën echter kleurloze baryonen en mesonen naar voren als effec-

tieve vrijheidsgraden. De beschrijving aan de hand van deze hadronische vrijheidsgraden

is in de nucleaire- en hadronfysica al geruime tijd zeer efficiënt en succesvol gebleken. Bij

welke energieschaal en op welke wijze de transitie van hadronische naar de partonische

vrijheidsgraden plaatsvindt, is nog steeds niet opgehelderd en vormt heden ten dage een

zeer actief en boeiend onderzoeksgebied. Om deze overgang in kaart te brengen gaat men

op zoek naar QCD-gerelateerde fenomenen die afwijken van wat door de nucleaire fysica

standaard voorspeld wordt.

Een voorbeeld van zo’n fenomeen is kleurtransparantie. Bij reacties met een hoge

vierimpulstransfer, voorspelt QCD dat hadronen in een toestand met een kleine dwarsdoor-

snede gevormd worden. Deze kleine objecten lijken kleurloos, en ondervinden verminderde

reacties met het medium waarin ze gevormd worden alvorens te evolueren tot een norma-

le hadronische toestand. In de zoektocht naar kleurtransparantie meet men de nucleaire

transparantie, een observabele die een maat vormt voor de attenuatie van een hadron in

een medium. Kleurtransparantie zou zich manifesteren als een stijging van de transparantie

bij toenemende energieën. Transparanties werden al voor verschillende reacties gemeten,

maar tot nog toe is de aanvang van het fenomeen van kleurtransparantie niet eenduidig

vastgesteld. De voorbije jaren werden in Jefferson Lab experimenten uitgevoerd waarin

men de transparantie gemeten heeft bij foto- en elektroproductie van het pion, en twee-

nucleon-uitstootreacties. In dit werk wordt de transparantie berekend in de kinematische

gebieden die overeenkomen met bovenvermelde experimenten.
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Korte-drachtscorrelaties zijn een tweede afwijking van de standaardbeschrijving van nu-

cleaire systemen die in dit werk van naderbij bekeken worden. Korte-drachtscorrelaties ont-

staan door de repulsieve kern en het tensorgedeelte van de nucleon-nucleonkracht. Omdat

deze delen van de nucleon-nucleonkracht niet compatibel zijn met een typische gemiddeld-

veldbenadering, vindt men de korte-drachtscorrelaties niet terug in het traditionele schil-

lenmodel. De sterke afstoting creëert nucleonparen met een hoge relatieve impuls en zorgt

voor fluctuaties van hoge dichtheid in de kern.

Formalisme

In dit werk wordt een relativistisch en kwantummechanisch raamwerk uiteengezet dat ge-

bruikt wordt om exclusieve uitstootreacties aan kernen te beschrijven en dat geen enkele

vrije parameter bevat. Het wordt hier specifiek toegepast op foto- en elektroproductie van

pionen en twee-nucleon foto-uitstootreacties. Bij het modelleren van uitstootreacties ver-

dienen drie deelproblemen onze aandacht:

• De beschrijving van de harde reactie, die de uitstoot van de deeltjes veroorzaakt.

• De structuur van de golffuncties voor de trefkern en de restkern.

• De behandeling van de finale-toestandsinteracties (FSI), die de invloed van het nu-

cleaire medium op de uitgaande deeltjes uitdrukken.

De interactie van de inkomende probe gebeurt bij alle reacties in de impulsbenade-

ring. Bij de foton- en elektrongeïnduceerde productiereacties van pionen, wordt voor het

beschrijven van de harde reactie gebruik gemaakt van een zogenaamde gefactoriseerde be-

nadering voor de werkzame doorsnede. Hierbij wordt amplitude van het uitstootproces

gerelateerd aan die van het vrije proces, waarna de werkzame doorsnede van het vrije pro-

ces optreedt als een factor in die van het proces aan een kern. Voor de fotongeïnduceerde

uitstoot van twee nucleonen worden twee concurrerende reactiemechanismes ongefacto-

riseerd behandeld. Het eerste beschrijft de reactie als een eenstapsproces waarbij het in-

komend foton interageert met één van de nucleonen in een gecorreleerd paar waarbij dit

nucleon de kern verlaat. Het tweede nucleon blijft achter met een hoge impuls, waardoor

het de kern ook kan verlaten. Het gecorreleerd nucleonpaar wordt beschreven d.m.v. golf-

functies die zich in een relatieve 1S0 toestand bevinden. Het tweede reactiemechanisme

gebruikt een tweestapsproces waarbij het foton interageert met een nucleon dat op zijn

baan uit de kern een tweede harde reactie veroorzaakt met een tweede nucleon, dat daar-

door ook uit de kern vliegt. Om deze harde herverstrooiing te beschrijven wordt er gebruik

gemaakt van de nucleon-nucleonverstrooiingsamplitudes uit de SAID database.
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Voor de beschrijving van alle inkomende en uitgaande deeltjes worden relativistische

golffuncties gebruikt. De golffunctie van de tref- en restkern wordt bekomen in het nucleai-

re schillenmodel. Hierbij bewegen de individuele nucleonen van de kern in een gemiddeld-

veldpotentiaal opgewekt door alle andere nucleonen. De totale golffunctie van de kernen

neemt de vorm aan van een Slater-determinant. De relativistische één-deeltjesgolffuncties

worden bekomen in de Hartree-benadering van het σ−ω model.

Bij voldoende hoge energieën wordt de invloed van het nucleaire medium op de uitge-

stoten deeltjes berekend in een relativistische Glauber veelvoudige-verstrooiingsbenadering

(RMSGA). De Glauber-beschrijving, voor het eerst toegepast in optica, is een eikonale be-

nadering en steunt op de kleine golflengte van het deeltje in vergelijking met de dracht van

de potentiaal. De verstrooiingen gebeuren over kleine hoeken en zijn elastisch of licht in-

elastisch. De banen van de uitgestoten deeltjes worden door een lineair traject beschreven

en de residuele nucleonen worden bevroren tijdens de verstrooiingen. De implementatie

van de RMSGA benadering gebeurt d.m.v. een scalaire Glauber-operator die inwerkt op de

golffunctie van het uitgaand deeltje. Elke verstrooiing met een residueel nucleon voegt een

extra fase toe aan deze operator. Deze Glauber-operator hangt van drie verstrooiingspara-

meters af. Voor de numerieke bepaling van deze parameters worden fits aan pion-nucleon-

en nucleon-nucleonverstrooiingsdata gebruikt.

Voor uitgestoten nucleonen met een lage impuls, waarvoor de onderliggende aanna-

mes van de Glauber-benadering niet meer toepasbaar zijn, voorziet het model ook de mo-

gelijkheid om de FSI te beschrijven met behulp van een ROMEA model in een eikonale

benadering. Het ROMEA model steunt op optische potentialen om de interacties van de

uitgaande deeltjes met het nucleaire medium te beschrijven. In tegenstelling tot de aanpak

van de RMSGA benadering, die steunt op nucleon-nucleonverstrooiing, zijn deze optische

potentialen gebaseerd op globale fits aan elastische nucleon-kern verstrooiingsdata.

De implementatie van het kleurtransparantie-effect gebeurt in het kwantumdiffusie-

model van Farrar e.a. De totale werkzame doorsnede voor pion-nucleon- en/of nucleon-

nucleonverstrooiing (die één van de Glauber-parameters is), wordt vervangen door een

effectieve werkzame doorsnede. Deze evolueert lineair van een gereduceerde waarde over

een bepaalde formatielengte tot zijn normale waarde.

De invloed van korte-drachtscorrelaties kan toegevoegd worden aan de berekening van

de FSI. De ééndeeltjesdichtheid in de integralen bij de berekening van de Glauber-operator

wordt vervangen door een gemodificeerde dichtheid die rekening houdt met de aanwezig-

heid van een nucleon op de plaats van de harde interactie. Deze gemodificeerde dichtheid

vertoont een gat op de plaats van de harde interactie, veroorzaakt door de harde kern van

de nucleon-nucleoninteractie. Dichtheden aan de rand van dit gat zijn hoger dan de gewone
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ééndeeltjesdichtheid. De normalisatie blijft behouden bij het gebruik van de gemodificeer-

de dichtheid, door het invoeren van een extra functie die afhankelijk is van de coördinaat

van de harde interactie. Deze functie vormt de oplossing van een integraalvergelijking, die

numeriek opgelost wordt.

Numerieke resultaten

De resultaten van de numerieke berekeningen werden samengevat in hoofdstuk 3. Dit

hoofdstuk begint met de numerieke analyse van de Glauber-FSI-factor (die alle informatie

omtrent de attenuatie door het nucleaire medium omvat) voor een uitgestoten pion en

nucleon uit koolstof met een kinematiek die overeenstemt met die waarvoor in Jefferson

Lab data werden genomen. De analyse toont aan dat het effect van de verstoringen in de

norm en fase van de FSI-factor sterker wordt naarmate meer materie doorkruist wordt.

De invloed van de FSI-factor op de impulsdistributies van de nucleonen laat zien dat het

signaal sterk gereduceerd wordt in de aanwezigheid van de finale-toestandsinteracties.

Het hoofddoel van dit werk is het uitvoeren van berekeningen met een kinematiek die

overeenstemt met die van de hierboven aangehaalde transparantie-experimenten uitge-

voerd in Jefferson Lab. Berekeningen voor de fotongeïnduceerde pionproductiereactie to-

nen een transparantie die relatief weinig afhangt van de harde schaal. De toevoeging van

korte-drachtscorrelaties zorgt voor een toename in de transparantie van ongeveer 5%, onaf-

hankelijk van de harde schaal. Berekeningen met inclusie van het kleurtransparantie-effect

tonen een volledig andere afhankelijkheid van de harde schaal. De invloed op de transpa-

rantie varieert van ongeveer 0% bij de laagst opgemeten fotonenergie tot meer dan 20% bij

de energieën die beschikbaar zullen zijn na de 12-GeV-upgrade van JLab. Een vergelijking

met de data en een semi-klassieke berekening laat zien dat de RMSGA-berekeningen deze

in het ganse energiebereik overschatten en er niet in slaagt de lage |t|-afhankelijkheid te

reproduceren. Bij hogere energie is de helling van de data wel in goede overeenstemming

met de berekeningen waarbij kleurtransparantie in rekening werd gebracht. Transparan-

tieberekeningen met de RMSGA- en ROMEA-aanpak in het energiegebied waar ze beide

toepasbaar zijn, tonen verschillen van ongeveer 5% tussen beide modellen, die bovendien

kleiner worden bij hogere energie.

Voor de elektrongeïnduceerde productiereactie van pionen bevestigen de berekeningen

dat de korte-drachtscorrelaties en kleurtransparantie-effecten op verschillende manieren

afhankelijk zijn van de harde schaal. De energie- en A-afhankelijkheid van de data vertonen

bovendien duidelijke afwijkingen van de voorspellingen uit de traditionele nucleaire fysica,

hetgeen in zeer goede overeenstemming is met zowel de RMSGA-berekeningen die het
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kleurtransparantie-effect bevatten, als resultaten uit een semiklassiek model. Meer bewijs

voor de modelonafhankelijkheid van de transparantieberekeningen wordt geleverd door

extra vergelijkingen met resultaten uit het semiklassiek model. Deze vertonen gelijkaardige

trends, met RMSGA-berekeningen die meestal ongeveer 5% hoger liggen.

Resultaten in zowel het een- als tweestapsreactiemechanisme voor de fotongeïnduceer-

de twee-nucleonuitstootreactie, tonen transparanties die duidelijk lager liggen dan wat men

uit een één-protonuitstootreactie zou verwachten. Dit is het gevolg van het feit dat beide re-

actiemechanismes zones met hoge dichtheid in de kern bereiken. Hoge dichtheden beteke-

nen meer FSI, en dus lagere transparanties. Bij de tweestaps-harde-herverstrooiingsreactie

wordt het effect van de nucleon propagator FSI op de transparantie bepaald op 5%.

In een laatste deel, worden de robuustheid en veelzijdigheid van het Glauber-raamwerk

aangewend om een consistente vergelijkende studie van de effectief bereikte dichtheid te

maken voor uitstootreacties met één
�

(e, e′p)
�

, twee
�

(γ, pp)
�

en drie
�

(p, 2p)
�

nucleonen.

Vergelijkingen in een koolstof- en een ijzerkern tonen dat de (γ, pp)-reactie de hoogste

dichtheid in het centrum van de kern bereikt. Door de sterke initiële-toestandsinteracties is

de (p, 2p)-reactie sterk aan het oppervlak gelocaliseerd, waar het een eerder lage dichtheid

bereikt. De (e, e′p)-reactie valt ergens tussen deze twee uitersten. Het verschil in effectieve

dichtheid tussen de drie reacties was minder uitgesproken voor de ijzerkern dan voor de

koolstofkern.

Conclusie

We hebben een relativistisch formalisme ontwikkeld dat gebruikt werd voor de modelle-

ring van foton- en elektrongeïnduceerde pionproductie aan kernen. Ook de twee-nucleon-

uitstootreactie kan worden beschreven, zowel in een eenstapsreactie (uitstoot van een ge-

correleerd paar) als tweestapsreactie (harde herverstrooiing). De FSI van de pionen en

nucleonen worden behandeld in het RMSGA-model. Voor nucleonen met lage impuls is er

ook een beschrijving in het ROMEA-model mogelijk. Transparantieberekeningen toonden

een duidelijk verschil in de manier waarop korte-drachtscorrelatie- en kleurtransparantie-

effecten afhankelijk zijn van de harde schaal. De data voor pion elektroproductie waren

bovendien in zeer goede overeenstemming met de berekeningen die het kleurtransparantie-

effect in rekening brachten.

In de toekomst, na de upgrade van de Jefferson Lab versneller tot 12 GeV, zullen experi-

menten ons meer kunnen leren over het verloop van de transparantie bij hogere energieën.

Ook kan het model nog verder uitgebreid worden en beschrijvingen voor uitstootreacties

met een kaon- of rho-meson voorzien. Verbeteringen die nog mogelijk zijn in het model zijn
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bijvoorbeeld het gebruik van meer realistische golffuncties voor lichte kernen, het toevoe-

gen van tensorcorrelaties, en een beschrijving voor de korte-drachtscorrelaties die vertrekt

vanuit partonische vrijheidsgraden.
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